Books-Lib.com » Читать книги » Разная литература » Мир-фильтр. Как алгоритмы уплощают культуру - Кайл Чейка

Читать книгу - "Мир-фильтр. Как алгоритмы уплощают культуру - Кайл Чейка"

Мир-фильтр. Как алгоритмы уплощают культуру - Кайл Чейка - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Разная литература книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Мир-фильтр. Как алгоритмы уплощают культуру - Кайл Чейка' автора Кайл Чейка прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

58 0 15:04, 07-02-2025
Автор:Кайл Чейка Жанр:Читать книги / Разная литература Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Мир-фильтр. Как алгоритмы уплощают культуру - Кайл Чейка", которую можно читать онлайн бесплатно без регистрации

Интернет с его рекомендательными алгоритмами захватил человечество. Каждый из нас живет в сглаженном и, по сути, обезличенном мире, пропущенном через фильтры. Алгоритмы определяют, какие песни мы слушаем и с какими друзьями поддерживаем связь. Они все больше влияют не только на то, какую культуру мы потребляем, но и на то, какая культура производится.Журналист Кайл Чейка дает читателю увлекательный экскурс в историю появления и развития алгоритмической подачи информации, рассказывает о сегодняшних реалиях, в которых она играет принципиальную роль для нашей культуры, о плюсах и минусах такого положения дел, а также предлагает осознанные решения, которые помогут сохранить свое собственное «я» в эпоху алгоритмов.В формате PDF A4 сохранён издательский дизайн.

1 ... 4 5 6 7 8 9 10 11 12 ... 96
Перейти на страницу:
1994 года у Ringo были двадцать одна сотня пользователей и пятьсот электронных писем в день с оценками музыки.

Ringo тестировала различные алгоритмы для принятия решений на основе музыкальных рейтингов. Первый алгоритм измерял несходство между вкусами пользователей и основывал рекомендации на максимальном сходстве. Второй измерял сходство, а затем использовал для принятия решений положительные и отрицательные корреляции с другими пользователями. Третий определял корреляцию между различными исполнителями и рекомендовал музыкантов, которые сильно коррелировали с теми, что уже нравились данному человеку. Четвертый алгоритм (по мнению исследователей, самый эффективный) подбирал пользователей на основе того, положительно или отрицательно они оценивали одни и те же вещи – иными словами, на основе совпадения вкусов. Сходство оказалось наилучшей переменной. Чем больше пользователей включалось в систему и чем больше сведений они предоставляли, тем лучше работала Ringo – некоторые пользователи даже назвали систему “пугающе точной”. Инновация Ringo заключалась в том, что она подтверждала: наилучшим источником точных рекомендаций или лучших индикаторов релевантности, скорее всего, являются другие люди, а не анализ самого содержания. Концепция отражала повышение важности человеческого вкуса.

Первые алгоритмы интернета разработали для того, чтобы просеивать огромное количество материала в поисках вещей, важных для пользователя, и затем представлять их в связном виде. Целью были рекомендации: рекомендовать ту или иную информацию, песню, картинку или новость в социальных сетях. Алгоритмическую подачу информации иногда более формально и буквально называют “рекомендательными системами” за простой акт выбора того или иного контента.

Первым полностью общедоступным интернет-алгоритмом, с которым сталкивался практически каждый пользователь интернета, стал алгоритм поиска Google. В 1996 году, учась в Стэнфордском университете, соучредители Google Сергей Брин и Ларри Пейдж начали работу над тем, что впоследствии превратилось в PageRank – систему ранжирования страниц интернета (который на тот момент насчитывал около ста миллионов документов); она просматривала веб-страницы и определяла, какие из них окажутся полезнее или информативнее. Алгоритм PageRank подсчитывал, сколько раз на данный сайт ссылались другие, подобно тому, как авторы научных работ ссылаются на результаты предыдущих серьезных исследований. Чем больше ссылок, тем более важной считалась страница. Показатель цитирования “согласуется с субъективным представлением людей о важности”, – писали Брин и Пейдж в 1998 году в работе “Анатомия системы крупномасштабного гипертекстового интернет-поиска”. Алгоритм PageRank объединил форму совместной фильтрации с фильтрацией на основе содержания. Связывая различные страницы, люди-пользователи формировали субъективную карту рекомендаций, которую учитывал алгоритм. Он также измерял такие факторы, как количество ссылок на странице, относительное качество этих ссылок и даже размер текста – чем он длиннее, тем более релевантным может оказаться текст для конкретного поискового запроса. Страницы с высоким значением PageRank с большей вероятностью появлялись в верхней части списка результатов, которые выдавала поисковая система Google.

Прогноз Пейджа и Брина относительно того, что их система останется функциональной и масштабируемой по мере развития интернета, оказался верным. Спустя десятилетия PageRank стал почти тиранической системой, которая управляет тем, как и когда видны сайты. Для любого бизнеса или ресурса жизненно важно приспособиться к алгоритму ранжирования и попасть на первую страницу результатов поиска Google. В начале 2000-х годов мне приходилось просматривать множество выдаваемых страниц, чтобы найти то, что мне требовалось. В последнее время я почти никогда не добираюсь даже до второй страницы – в частности, благодаря тому, что поисковая система Google теперь еще и сама показывает текст, который сочла релевантным: она берет его с сайта и демонстрирует пользователю в верхней части страницы – выше фактических результатов поиска. Таким образом, пользователь, спросивший: “Можно ли кормить собаку морковью?” (я без устали искал ответ на этот вопрос, когда у меня впервые появился щенок), сразу получает ответ, и у него отпадает необходимость заходить на другой сайт, что еще сильнее укрепляет авторитет Google. “Знание – сила”, – писал Фрэнсис Бэкон в XVI веке, однако в эпоху интернета, возможно, еще больше преимуществ дает сортировка знаний. Информацию сегодня найти легко; гораздо сложнее разобраться в ней и понять, какие сведения полезны.

Пейдж и Брин хотели, чтобы их система была относительно нейтральной и оценивала каждый сайт исключительно с точки зрения его релевантности. Задача алгоритма заключалась в предоставлении пользователю наилучшей информации. Ориентирование поиска на определенный сайт или бизнес испортило бы результаты. “Мы полагаем, что поисковые системы, финансируемые за счет рекламы, будут по своей сути отдавать предпочтение рекламодателям и не учитывать нужды потребителей”, – писали предприниматели в 1998 году. И тем не менее в 2000 году они запустили Google AdWords – пилотный продукт компании для рекламодателей (сейчас он называется Google Ads). Забавно читать их критику сегодня, когда именно реклама обеспечивает подавляющую часть доходов компании – более 80 % в 2020 году. Поскольку алгоритм PageRank привел в поисковую систему Google миллиарды людей, компания также получила возможность отслеживать, что ищут пользователи, и таким образом продавать рекламодателям позиции в выдаче при определенных поисковых запросах. Как и результаты поиска, рекламные объявления, показываемые пользователю, тоже определяются алгоритмом. И эта реклама, построенная на поисковом алгоритме, сделала Google настоящим левиафаном.

К началу 2000-х годов наш цифровой опыт уже определялся алгоритмической фильтрацией. Сайт Amazon еще в 1998 году начал использовать совместную фильтрацию при рекомендациях товаров клиентам. Однако система компании не пыталась обнаруживать сходные профили пользователей, чтобы приблизительно оценивать вкусы, как это делала Ringo; она определяла товары, которые часто покупают вместе, – например, погремушка и детская бутылочка. Статья 2017 года, созданная одним из сотрудников Amazon, описывает подобные предложения на сайте:

На главной странице выделялись рекомендации, основанные на ваших прошлых покупках и просмотренных товарах… Корзина рекомендовала добавить другие товары – возможно, спонтанные покупки, которые делаются в последнюю минуту, а возможно, дополнения к тому, что вы уже рассматривали. По окончании заказа появлялись дополнительные рекомендации, предлагающие заказать товары позже.

Такие алгоритмические рекомендации напоминают полки, расположенные непосредственно перед кассой в супермаркетах, – последний стимул купить товары, которые могут вам пригодиться. Но в данном случае рекомендации подбирались индивидуально для каждого пользователя сайта, и в результате, как утверждала статья, получался “магазин для каждого покупателя”. Amazon обнаружила, что персонализированные рекомендации товаров гораздо эффективнее с точки зрения количества кликов и продаж, чем неперсонализированные методы маркетинга – например, реклама на баннерах и списки наиболее популярных товаров, которые нельзя нацелить столь же точно. Алгоритм рекомендаций продвигал бизнес и оказался удобен для покупателя, который получил возможность находить вещи, о необходимости которых даже не подозревал. (Прямо сейчас главная страница Amazon рекомендует мне мойку с аккумуляторным питанием и японскую сковороду для омлета.)

Первые подобные алгоритмы сортировали отдельные электронные письма, музыкантов (в отличие

1 ... 4 5 6 7 8 9 10 11 12 ... 96
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: