Читать книгу - "Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов"
Аннотация к книге "Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов", которую можно читать онлайн бесплатно без регистрации
Квантовая механика – самый точный из известных человечеству способов описания мира на той фундаментальной глубине, которая определяет его структуру, но недоступна прямому наблюдению. Только благодаря квантовой природе удается существовать атомам, людям, звездам и почти всему остальному. Квантовые эффекты, которые уже задействованы в технологиях, максимально приближаются к нашим представлениям о чудесах. Но в силу самого своего устройства квантовая механика оставляет недосказанности в отношении поведения квантовых объектов и свойств реальности.На заре второго квантового столетия Алексей Семихатов, автор бестселлера «Всё, что движется», предлагает последовательное изложение современного состояния квантовой механики. Каковы принципиальные особенности квантового мира и какой ценой их можно примирить с интуицией? По каким правилам развиваются квантовые системы во времени и как в это развитие вмешиваются вероятности? Как различные интерпретации квантовой механики подталкивают нас к глубоко философским заключениям о возможном устройстве реальности – от параллельных вселенных до разрывов в восприятии? И как привычная нам реальность возникает из чуждой ей квантовой? Что все-таки делает квантовый компьютер, что и как вовлекается в квантовую запутанность и почему квантовым объектам приходится существовать без некоторых свойств? Оказывается, о квантовой механике можно всерьез говорить понятным языком, а обсуждение ее сложных мест делает этот разговор только интереснее.Согласно квантовым законам и только лишь благодаря квантовым законам существуют атомы, из которых состоим и мы сами, и почти все на планете Земля; благодаря квантовым законам горит Солнце; квантовые процессы определяют взаимодействие света и вещества; весь наш мир собран из квантовых объектов. Но фундаментальная квантовая природа в глубине мира остается в основном незаметной из-за мельтешения огромного числа мельчайших участников. По отдельности они ведут себя квантово и взаимодействуют друг с другом тоже по квантовым правилам, но все вместе образуют привычный нам наблюдаемый, и почти ничем не квантовый, мир…. Парадоксальным образом привычные свойства окружающего мира основаны на чуждых ему квантовых явлениях.Особенности26 иллюстраций, нарисованных специально для книги. Иллюстратор Нюся Красовицкая предложила философско-метафорическое видение предмета, определяющая черта которого – отсутствие наглядности.Квантовая механика не похожа на другие физические теории. Она поразительно успешна на практике, а ее логическая структура приводит к интригующим проблемам философского порядка. Ее вычислительная схема основана на строгих формальных предписаниях, но знаменательным образом обходит стороной вопрос о том, что же физически происходит в пространстве-времени. И в соответствии со своей собственной логикой квантовая механика ставит перед нами вопросы об устройстве реальности, но не затрудняет себя однозначными ответами.Для когоДля тех, кому интересно, какие правила игры, радикально отличающиеся от привычных, лежат в самой основе мира и определяют устройство и нас самих, и почти всего, что нас окружает.Мир выглядел бы совершенно безумным, если бы в нашем восприятии отражалась даже малая часть экзотически запутанных состояний, которые в огромном количестве возникают в ходе эволюции волновой функции под управлением уравнения Шрёдингера. Общим местом была бы неопределенность положения и ориентации в пространстве; объекты находились бы в самых немыслимых комбинациях запутанных свойств.
Неразличимость бросает вызов нашей интуиции. Кажется, что в скоплении одинаковых объектов всегда можно выделить один, или поставив на нем отметину, или не сводя с него глаз. Но отметину на электроне поставить нельзя примерно так же, как нельзя поставить отметину на одном бите информации; а не сводить глаз тоже не удастся, поскольку наблюдение представляет собой вмешательство в систему. Принципиальная неразличимость одинаковых частиц означает, что о перестановке двух таких частиц в природе бессмысленно даже говорить.
Чтобы волновая функция отражала такое положение дел, от нее, как кажется, тоже требуется не меняться при перестановке двух частиц. Но ситуация чуть более тонкая. Не меняться должно только то, что наблюдаемо: не сама волновая функция, а ее квадрат{108}. Для волновой функции тогда остаются две возможности: при перестановке или действительно не меняться совсем, или приобретать лишний знак минус (следы которого начисто пропадут при возведении в квадрат).
Мир на удивление охотно следует максиме «всё, что возможно, где-то реализуется». В природе и в самом деле встречаются неразличимые объекты обоих классов: те, для которых волновая функция совсем не меняется, и те, для которых она приобретает лишний знак минус при перестановке двух объектов. Те, для которых совсем не меняется, называются бозонами, а те, что грешат лишним минусом, – фермионами{109}.
Выразительные следствия имеются в каждом случае, но ситуация с фермионами ярче: для них отсюда следует принцип Паули, запрещающий одинаковые состояния в коллективе частиц. Мы им уже пользовались «взаймы», а сейчас можно увидеть, каким образом он получается из того самого минуса. Если имеются два одинаковых состояния, то при их перестановке волновая функция, разумеется, не меняется никак, но одновременно, по общему правилу для фермионов, она приобретает лишний минус. Единственное, что не меняется от лишнего знака минус, – число 0. Следовательно, волновая функция с двумя фермионами в одном и том же состоянии равна нулю – и вероятность встретить такую картину тоже равна нулю. Таким-то образом фермионы и оказываются абсолютно нетерпимы к себе подобным.
Возвращаясь к тому, как описывать переменное число частиц: вновь спасибо волновой функции за то, что она позволяет комбинировать «что угодно» с помощью безобидного с виду знака плюс (который мы многократно использовали, говоря о состояниях типа «спин вверх плюс спин вниз»). Теперь предлагается без тени сомнения подобным же образом комбинировать состояния, описывающие один, два, три и т. д. неразличимых объекта – разумеется, заранее побеспокоившись, чтобы каждое из этих состояний не изменялось при перестановках частиц, если они бозоны, и приобретало минус, если фермионы. Математическое пространство, в котором помещаются все эти состояния, называется пространством Фока. Это, если угодно, конструкция с бесконечным количеством этажей: на первом живут одночастичные волновые функции, на втором – двухчастичные, и т. д. На каждом следующем этаже все больше разнообразия, поэтому вполне можно представлять себе, что с набором высоты этажи расширяются; и все это странное «здание» продолжается вверх без ограничения. Математика это позволяет.
А далее в этом математическом пространстве, содержащем все возможные многочастичные состояния, происходит «квантовое чудо» с радикальными последствиями для фундаментальной картины мира. В его структуре обнаруживается бесконечный набор квантовых колебательных систем. Такие системы встречались нам в главе 4 – с угрозой, что они появятся снова, причем на более фундаментальном уровне. Эту угрозу я сейчас и привожу в действие.
Обычные колебательные системы ассоциируются с тем или иным видом упругости – которая, собственно, и определяет частоту их колебаний. Но здесь откуда берется что-нибудь в этом роде? Квантовая механика прекрасна своей абстрактностью, полностью избавляя нас от мучительной обязанности изобретать «наглядные», но несуществующие подробности. Квантовая колебательная система существует постольку, поскольку выполнены все необходимые формальные свойства, ведь картины «что, как и куда движется» для квантовых колебаний все равно нет! А с формальными свойствами дело обстоит следующим образом.
Ключевое свойство квантовых колебаний, как мы говорили, – дискретные значения энергии, разделенные интервалами постоянной ширины: имеется бесконечно уходящая вверх «лестница» разрешенных значений энергии. За «сооружением» этой лестницы в глубине квантовой механики стоят пары операций, изменяющих волновую функцию: одна операция превращает волновую функцию, отвечающую каждой ступеньке, в следующую по порядку возрастания энергии, а другая – в предыдущую. Причина дискретности – вражда между этими «лестничными операциями», повышающей и понижающей. (Как мы говорили в главе 3, на самом фундаментальном уровне вражда происходит из взаимоотношения абстрактных операций; они воздействуют на волновые функции, как мы видели в главе 9, и вражду можно «измерить», сравнивая результаты применения операций в разном порядке.) Повышающая и понижающая лестничные операции, должным образом враждующие друг с другом, и берут на себя почти всю работу по определению квантовой колебательной системы, никакие наглядные образы при этом не нужны. В дополнение требуется только конкретное расстояние между энергетическими ступеньками (которое для неквантовой колебательной системы связано с упругостью и определяет частоту колебаний).
Удивительным образом в системе с переменным числом неразличимых частиц обнаруживается все необходимое для существования квантовых колебательных систем! А когда система с переменным числом частиц рассматривается в качестве организованного набора квантовых колебательных систем, она принимает вид квантового поля.
В оставшейся части этой главы я расскажу, что такое квантовое поле и как до него добраться, следуя исторической логике – начиная именно с системы с переменным числом частиц. Без этого мотивировать всю конструкцию не очень просто, но стоит сразу оговориться, что логика современного взгляда на природу обратна исторической: именно квантовые поля рассматриваются как самые фундаментальные структуры материи. Они совершенно самостоятельны в своем существовании, а проявлять себя могут в том числе в виде элементарных частиц. Дорогу к квантовому полю проще пройти, имея дело с бозонами, как я и собираюсь поступить. Начинаем!
«Плодотворная дебютная идея» состоит в том, чтобы сформулировать математическую операцию, которая связывает «этажи», населенные одночастичными, двухчастичными, трехчастичными и т. д. состояниями: из любого состояния такая операция производит новое состояние, в котором на одну частицу больше. Это не физический процесс, а математическое средство; указанная операция добавляет какую-то волновую функцию одной частицы к уже имеющимся и «беспокоится» о правильном поведении результата при перестановках частиц. Добавляемая волновая функция может быть любой; фактически для каждой возможной волновой функции одной частицы имеется своя операция ее добавления. Про все эти операции говорят, что они рождают новую частицу, и называют их операциями рождения{110}.
Все состояния, скажем, с тремя частицами можно математически получить, применяя операции рождения к состояниям с двумя частицами; а состояния с двумя – к тем, где всего одна частица. И здесь не надо останавливаться. Любое состояние с одной частицей тоже можно получить, действуя подходящей операцией рождения. Действуя на что? На состояние, где частиц нет. У «здания» с бесконечным числом этажей есть, оказывается, невидимый фундамент. Это вакуумное состояние, выражающее отсутствие всего, что может отсутствовать, но это и вполне определенный объект или даже явление. Его главное свойство – в том, что, достаточное число раз применив к нему всевозможные операции рождения, можно получить все состояния с любым числом частиц.
Еще есть операция, которая уничтожает частицу с любой выбранной волновой функцией. Она ведет «на один этаж вниз». Точнее, когда такую операцию уничтожения применяют к состоянию, скажем, из пяти частиц, хотя бы одна из которых описывается выбранной волновой функцией, получается состояние из четырех частиц. Если же ничего похожего на данную волновую функцию в состоянии не обнаружено, операция уничтожения «убивает» все состояние целиком: получается ноль. Таким же образом она, конечно, убивает и вакуум – состояние, где частиц нет. Это тоже пока лишь математическая операция. Но вот кульминация.
Поинтересуемся, «в каких отношениях» состоят операции рождения и уничтожения – не враждуют ли они, и если да, то как именно. Для получения ответа требуется провести вычисление; результат его от нас уже не зависит, поскольку обе операции полностью определены. Что же получается?
Итог изумляет: мы обнаруживаем клад, и даже не так глубоко закопанный. Операции рождения и уничтожения частицы с любой выбранной волновой функцией враждуют в точности так же, как повышающие и понижающие лестничные операции, обслуживающие
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев