Читать книгу - "Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов"
Аннотация к книге "Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов", которую можно читать онлайн бесплатно без регистрации
Квантовая механика – самый точный из известных человечеству способов описания мира на той фундаментальной глубине, которая определяет его структуру, но недоступна прямому наблюдению. Только благодаря квантовой природе удается существовать атомам, людям, звездам и почти всему остальному. Квантовые эффекты, которые уже задействованы в технологиях, максимально приближаются к нашим представлениям о чудесах. Но в силу самого своего устройства квантовая механика оставляет недосказанности в отношении поведения квантовых объектов и свойств реальности.На заре второго квантового столетия Алексей Семихатов, автор бестселлера «Всё, что движется», предлагает последовательное изложение современного состояния квантовой механики. Каковы принципиальные особенности квантового мира и какой ценой их можно примирить с интуицией? По каким правилам развиваются квантовые системы во времени и как в это развитие вмешиваются вероятности? Как различные интерпретации квантовой механики подталкивают нас к глубоко философским заключениям о возможном устройстве реальности – от параллельных вселенных до разрывов в восприятии? И как привычная нам реальность возникает из чуждой ей квантовой? Что все-таки делает квантовый компьютер, что и как вовлекается в квантовую запутанность и почему квантовым объектам приходится существовать без некоторых свойств? Оказывается, о квантовой механике можно всерьез говорить понятным языком, а обсуждение ее сложных мест делает этот разговор только интереснее.Согласно квантовым законам и только лишь благодаря квантовым законам существуют атомы, из которых состоим и мы сами, и почти все на планете Земля; благодаря квантовым законам горит Солнце; квантовые процессы определяют взаимодействие света и вещества; весь наш мир собран из квантовых объектов. Но фундаментальная квантовая природа в глубине мира остается в основном незаметной из-за мельтешения огромного числа мельчайших участников. По отдельности они ведут себя квантово и взаимодействуют друг с другом тоже по квантовым правилам, но все вместе образуют привычный нам наблюдаемый, и почти ничем не квантовый, мир…. Парадоксальным образом привычные свойства окружающего мира основаны на чуждых ему квантовых явлениях.Особенности26 иллюстраций, нарисованных специально для книги. Иллюстратор Нюся Красовицкая предложила философско-метафорическое видение предмета, определяющая черта которого – отсутствие наглядности.Квантовая механика не похожа на другие физические теории. Она поразительно успешна на практике, а ее логическая структура приводит к интригующим проблемам философского порядка. Ее вычислительная схема основана на строгих формальных предписаниях, но знаменательным образом обходит стороной вопрос о том, что же физически происходит в пространстве-времени. И в соответствии со своей собственной логикой квантовая механика ставит перед нами вопросы об устройстве реальности, но не затрудняет себя однозначными ответами.Для когоДля тех, кому интересно, какие правила игры, радикально отличающиеся от привычных, лежат в самой основе мира и определяют устройство и нас самих, и почти всего, что нас окружает.Мир выглядел бы совершенно безумным, если бы в нашем восприятии отражалась даже малая часть экзотически запутанных состояний, которые в огромном количестве возникают в ходе эволюции волновой функции под управлением уравнения Шрёдингера. Общим местом была бы неопределенность положения и ориентации в пространстве; объекты находились бы в самых немыслимых комбинациях запутанных свойств.
Дирак решил обобщить эти свойства на случай пространства-времени. Хотя пространство-время – до некоторой степени математическая конструкция (мы-то сами живем в пространстве и ощущаем ход времени), в математике нет причин, мешающих построить объекты, столь же чуткие к поворотам в четырехмерном пространстве-времени. Для них потребовалось новое абстрактное пространство, которое по совпадению оказалось тоже четырехмерным. Это означало не две, а четыре компоненты волновой функции электрона, что с самого начала было несколько необычно, но иначе математика «не сходилась».
Ключевой момент здесь в том, что «повороты» в пространстве-времени включают в себя те самые пересчеты между картинами мира движущихся наблюдателей, которые перемешивают пространство и время, и поэтому хорошее поведение при таких поворотах обеспечивает согласованность со специальной теорией относительности. «Волшебная стрелка» в пространстве-времени, на повороты которой готовы были откликаться новые объекты, уже не изображала магнит, как в трехмерном пространстве, а стала чисто математической, но это никого не смущало – Дирака во всяком случае. Он смело согласился с тем, чего хотела математика: решил, что волновая функция будет составлена из четырех компонент, и при перемешиваниях пространства и времени они будут изменяться так, как говорит им живущая в пространстве-времени «воображаемая стрелка». Для них и удалось сформулировать уравнение со всеми желаемыми свойствами – ставшее известным как уравнение Дирака{105}.
Уравнение Дирака оказывается согласованным со специальной теорией относительности, если при пересчете между картинами мира движущихся наблюдателей не только перемешивать пространство и время, но и переставлять и комбинировать между собой компоненты волновой функции так, как велит это делать математика четырехмерных поворотов и отвечающих им спиноров.
Дирак в некотором роде доверился красоте математики, но успех в приложении к физическому миру последовал колоссальный: из нового уравнения автоматически получилось «удвоение силы магнита» для спина электрона – удвоение, которое Паули вынужден был использовать без объяснений (см. главу 9). Но это было далеко не все! Рассмотрев следствия из своего уравнения для атома водорода, Дирак нашел уточнения для разрешенных значений энергии по сравнению с теми, которые следовали из уравнения Шрёдингера после того, как Паули внедрил туда спин. Хотя и небольшие по величине, они улучшали совпадение между теоретическим результатом и экспериментальными данными, и это без сомнения свидетельствовало в пользу новоиспеченного уравнения (как мы помним, первоначально главным аргументом в пользу уравнения Шрёдингера тоже было вычисление разрешенных значений энергии в атоме водорода).
Но дальнейшая интрига развивалась по известному закону некоторых популярных жанров, где герой не добивается полного успеха с первой попытки, несмотря на то что поначалу все у него идет на удивление гладко; если это настоящий герой, ему предстоит пройти через кризис, когда рушится буквально все. Четырех компонент волновой функции, необходимых для записи уравнения, согласованного с теорией относительности, было ровно в два раза больше, чем нужно для описания электрона. Две из них работали, как было сказано, превосходно. На две другие можно было не обращать большого внимания в задачах типа атома водорода и в ряде других задач до тех пор, пока энергия описываемых ими электронов была достаточно мала: эти «непонятные» компоненты оказывались тогда несущественными. Но так было не во всех случаях.
Дело в том, что среди следствий специальной теории относительности имеется еще и формула Эйнштейна E = mc2: энергия покоящегося тела с массой m равна этой массе, умноженной на квадрат скорости света (в наши дни эта последовательность символов стала мемом). Уравнение Дирака «знало» об этой формуле – раз оно оказалось согласованным с требованиями теории относительности, математика обеспечивала появление этих эм-цэ-квадрат в нужных местах; в частности, «малые» энергии электронов, при которых две лишние компоненты волновой функции несущественны, означают энергию их движения, малую по сравнению с энергией mc2 (где масса m – это, конечно, масса электрона). При таких условиях Дирак и получил впечатляющие результаты для электрона в атоме. Однако полностью избавиться от двух «лишних» компонент было невозможно – само уравнение препятствовало этому.
Да и по принципиальным причинам систематически игнорировать их было нельзя, потому что если какая-то идея или уравнение претендует на описание мира, то решительно невозможно рассматривать только нравящиеся нам следствия из этой идеи или уравнения, забывая про все те, которые противоречат наблюдениям. Но «зачем» появились лишние компоненты? Противоречат ли они наблюдениям? И какой в них смысл?
Со смыслом все было совсем плохо. Две лишние компоненты описывали что-то вроде электрона – с тем же спином, что и у электрона, но с отрицательной массой, в точности противоположной массе электрона. Отрицательная масса – патологическое явление, которое не только не наблюдается в природе, но и вообще полностью противопоказано существованию мира. Решения уравнения, представленные двумя «хорошими» компонентами, имели положительную массу и обладали положительной энергией, несколько большей указанного эм-цэ-квадрат за счет энергии движения. А у «плохих» решений энергия тоже включала энергию движения, но все равно оставалась отрицательной из-за того, сколь «сильно отрицательный» вклад вносила отрицательная масса по формуле Эйнштейна. Кризис разразился вот где: нет никаких причин, мешающих электрону с положительной энергией отдать избыток энергии в виде излученного света, а самому занять состояние с отрицательной энергией. Однако если бы сколько-нибудь заметная доля окружающих нас электронов так поступила, наш мир (разумеется, вместе с нами) исчез бы в довольно яркой вспышке.
Так куда же математика завела Дирака? Вполне могли закрасться сомнения, подходящим ли оказалось уравнение, изобретенное посредством «волевого» применения четырехкомпонентной волновой функции ради соответствия принципу (только «темпы изменения», но не «темпы изменения темпов изменения» волновой функции), который сам по себе мог оказаться достаточно произвольным.
Кризис усугублялся. В 1929 г. Клейн путем вычислений показал, что уравнение Дирака ведет к патологическому результату в том случае, когда прилетевший «издалека» электрон встречает энергетическую стенку, созданную электрическим полем. Со стенками мы уже встречались, хотя и в несколько другом контексте; общее правило состоит в том, что с определенной вероятностью налетающий электрон или отражается обратно, или проходит сквозь преграду. Из расчетов с использованием уравнения Дирака следовало, что стоит только энергетической стенке оказаться достаточно высокой (неудивительно, что в критерии достаточной высоты тут снова фигурирует энергия mc2), как вероятность отражения от стенки оказывается больше единицы. Если (что в данном случае разумно) представить себе, что на стенку налетает много электронов, получается, что отражается от нее больше, чем налетает! Откуда они берутся и что это вообще за бессмыслица?
Время шло, туман не рассеивался. В конце 1929 г. Бор написал Дираку письмо с выражением обеспокоенности, что для разрешения парадоксов потребуются концептуальные нововведения. В ответ Дирак предложил нечто, что выглядело порядочным сумасшествием.
Да, признал он, электрон, разумеется, может излучить «лишнюю» энергию и оказаться в состоянии с отрицательной энергией. Но только в том случае, если его туда пустят – если там есть незанятое состояние. Дирак, конечно, знал о еще одной идее, принадлежавшей Паули (не про то, как описывать спин электрона): два электрона не могут находиться в одном и том же состоянии. Это – фундаментальный закон природы, по-русски называемый принципом запрета (или принципом запрета Паули). Запрет действует «сильнее любой силы» – электроны не «не хотят», а «не могут» занимать одно и то же состояние (пассажиры пригородных поездов в час пик натыкаются на похожий запрет, но для электронов он действует с абсолютной строгостью). А в применении к состояниям с отрицательной энергией Дирак заявил, что если все они уже заняты, то никакой электрон из «правильного» состояния (с положительной энергией) попасть в них не сможет – он просто не найдет себе места, но не буквально в физическом пространстве, а в том «пространстве возможностей», где живет волновая функция.
Электронов, которые занимали бы все состояния с отрицательными энергиями, требовалось бесконечно
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев