Читать книгу - "Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов"
Аннотация к книге "Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов", которую можно читать онлайн бесплатно без регистрации
Квантовая механика – самый точный из известных человечеству способов описания мира на той фундаментальной глубине, которая определяет его структуру, но недоступна прямому наблюдению. Только благодаря квантовой природе удается существовать атомам, людям, звездам и почти всему остальному. Квантовые эффекты, которые уже задействованы в технологиях, максимально приближаются к нашим представлениям о чудесах. Но в силу самого своего устройства квантовая механика оставляет недосказанности в отношении поведения квантовых объектов и свойств реальности.На заре второго квантового столетия Алексей Семихатов, автор бестселлера «Всё, что движется», предлагает последовательное изложение современного состояния квантовой механики. Каковы принципиальные особенности квантового мира и какой ценой их можно примирить с интуицией? По каким правилам развиваются квантовые системы во времени и как в это развитие вмешиваются вероятности? Как различные интерпретации квантовой механики подталкивают нас к глубоко философским заключениям о возможном устройстве реальности – от параллельных вселенных до разрывов в восприятии? И как привычная нам реальность возникает из чуждой ей квантовой? Что все-таки делает квантовый компьютер, что и как вовлекается в квантовую запутанность и почему квантовым объектам приходится существовать без некоторых свойств? Оказывается, о квантовой механике можно всерьез говорить понятным языком, а обсуждение ее сложных мест делает этот разговор только интереснее.Согласно квантовым законам и только лишь благодаря квантовым законам существуют атомы, из которых состоим и мы сами, и почти все на планете Земля; благодаря квантовым законам горит Солнце; квантовые процессы определяют взаимодействие света и вещества; весь наш мир собран из квантовых объектов. Но фундаментальная квантовая природа в глубине мира остается в основном незаметной из-за мельтешения огромного числа мельчайших участников. По отдельности они ведут себя квантово и взаимодействуют друг с другом тоже по квантовым правилам, но все вместе образуют привычный нам наблюдаемый, и почти ничем не квантовый, мир…. Парадоксальным образом привычные свойства окружающего мира основаны на чуждых ему квантовых явлениях.Особенности26 иллюстраций, нарисованных специально для книги. Иллюстратор Нюся Красовицкая предложила философско-метафорическое видение предмета, определяющая черта которого – отсутствие наглядности.Квантовая механика не похожа на другие физические теории. Она поразительно успешна на практике, а ее логическая структура приводит к интригующим проблемам философского порядка. Ее вычислительная схема основана на строгих формальных предписаниях, но знаменательным образом обходит стороной вопрос о том, что же физически происходит в пространстве-времени. И в соответствии со своей собственной логикой квантовая механика ставит перед нами вопросы об устройстве реальности, но не затрудняет себя однозначными ответами.Для когоДля тех, кому интересно, какие правила игры, радикально отличающиеся от привычных, лежат в самой основе мира и определяют устройство и нас самих, и почти всего, что нас окружает.Мир выглядел бы совершенно безумным, если бы в нашем восприятии отражалась даже малая часть экзотически запутанных состояний, которые в огромном количестве возникают в ходе эволюции волновой функции под управлением уравнения Шрёдингера. Общим местом была бы неопределенность положения и ориентации в пространстве; объекты находились бы в самых немыслимых комбинациях запутанных свойств.
Если действительно какой-то из «морских» электронов с отрицательной энергией получит откуда-нибудь к этой своей энергии прибавку колоссального размера 2mc2, то он выберется из моря и окажется электроном с приличествующей ему положительной энергией. Но там, откуда он ушел, станет на один отрицательный заряд меньше – что на фоне моря будет восприниматься как появление положительного заряда. Аналогична картина и с массой/энергией: уход из моря электрона с отрицательной массой оставляет там дырку, которую можно воспринимать как частицу с положительной массой. В результате дело выглядит так, что полученная энергия 2mc2 пошла на создание пары частиц: электрона с отрицательным зарядом и еще одной частицы с положительным зарядом, но с такой же массой, как у электрона! И парадокс Клейна получает объяснение: когда электрон налетает на энергетическую стенку высоты, превосходящей 2mc2, очень сильное электрическое поле, требуемое для ее создания, порождает такие пары: «лишние» электроны выскакивают из моря, а необходимую для этого энергию берут у поля.
Если все это выглядело хотя бы отчасти правдоподобным, труднопреодолимая проблема состояла в том, что единственными известными в то время носителями элементарного положительного заряда были протоны. Другого варианта объяснить, как «дырки» могли бы проявляться, в природе просто не было, однако здесь не могло не бросаться в глаза различие в массах: масса протона больше массы электрона почти в две тысячи раз. Дирак приложил усилия, чтобы показать, каким образом взаимодействие с (бесконечным) количеством электронов из моря могло бы привести к такому различию между массой частицы и дырки. Он ограничился малыми по сравнению с эм-цэ-квадрат энергиями (т. е. фактически пренебрег требованиями теории относительности), признав, однако, что над развитием высказанных им идей надо еще поработать. Тогда к обсуждению подключился Вейль – математическая фигура мирового масштаба. Он показал, что нарушить условие равенства масс между частицами и дырками невозможно по глубоким математическим причинам. Таким образом, из предложения Дирака ничего не вышло. Сам Вейль сделал отсюда вывод, что от теории «дырок в море» следует отказаться!
Веские аргументы против интерпретации дырок как протонов привел и Оппенгеймер, заметив, что если бы дело обстояло таким образом, то атом водорода быстро бы «самоуничтожился». На протяжении нескольких лет изобретение Дирака, несмотря на имевшиеся достижения, выглядело отчасти курьезным. В конце концов, в 1931 г., реакцией Дирака на возражения Вейля и Оппенгеймера стало решительное движение вперед, туда, куда вела логика формул.
Если дырка не похожа ни на что известное, то, значит, известно не все. «На бумаге» впервые появилась новая частица: «дырка» была объявлена антиэлектроном.
При его встрече с электроном происходит то самое, чего все боялись, но теперь не как массовое, а как единичное явление: электрон с положительной энергией отдает избыток энергии и заполняет дырку. Однако на фоне моря картина выглядит иначе: обычный электрон со своим обычным отрицательным зарядом и другая частица той же массы, но с положительным зарядом исчезают, а вместо них появляются фотоны, несущие энергию 2mc2.
Такой процесс в наше время хорошо известен как аннигиляция. И сейчас, говоря о ней, сразу добавляют, что аннигилируют частица материи и встречающаяся с ней частица антиматерии – ее античастица. Но вся идея античастиц и аннигиляции – вообще вся концепция антиматерии – выросла не из экспериментальных открытий, а из уравнения Дирака. Это уравнение неожиданно открыло вторую половину мира.
24
Что в поле
На упрек, что в игре ему часто просто везет, один известный гольфист однажды ответил: «Возможно. Но, знаете ли, я заметил, что чем лучше я играю, тем больше мне везет». Можно ли сказать, что Дираку «повезло»? Для решения задачи – написать релятивистское уравнение для электрона – известных средств не хватало, и он на свой страх и риск взялся придумывать новые. Но из новаторского по форме уравнения следовали и «хорошие», и «плохие» выводы. Обычно наличие «плохих» (конфликтующих с наблюдениями) приводит к закрытию всего проекта; «хороших» немного жаль, но что поделаешь – идея, значит, оказалась неверной, приходится признать поражение. Дираковский проект находился на грани закрытия из-за отрицательных энергий: если у электронов есть возможность «упасть» в состояния с такими энергиями, мир должен немедленно разрушиться.
Дирак обратил это почти поражение в победу, выдвинув почти абсурдную идею о заполненном, но ненаблюдаемом море электронов с отрицательной энергией. В числе наблюдаемых выводов отсюда оказались дырки – случаи недостачи электронов с отрицательной энергией, воспринимаемые как частицы с положительной энергией (и положительным зарядом). Придуманный таким образом антиэлектрон получил отдельное название: позитрон (от слова positive, что указывает на его положительный заряд).
Позитрон появился на бумаге как побочный продукт решения отдельной задачи, да еще с привлечением странной гипотезы, в то время, когда твердо, казалось бы, было установлено, что в природе имеются в точности две элементарные частицы, электрон и протон (даже нейтрон еще не был открыт!). Поэтому высказанное Дираком в 1931 г. предположение, что существует что-то еще, что никогда не наблюдалось, было необычайно смелым.
Далее события развивались стремительно. Позитрон был открыт экспериментально уже в августе 1932 г.; как это часто бывает, выяснилось, что следы, оставленные позитронами, наблюдались несколькими учеными и раньше, но те не придали им значения. (Кстати, в феврале того же года открыли и нейтрон.) Экспериментальное обнаружение «почти абсурдно» предсказанной частицы произвело такое впечатление, что в уже 1933-м Дирак стал нобелевским лауреатом – кстати, совместно со Шрёдингером, который свое уравнение открыл на семь лет раньше!{106}
Предсказание существования позитрона производит впечатление и теперь. Соединение двух независимых концепций – квантовой механики и теории относительности – дало знание, которое не содержалось в них по отдельности: знание об антиматерии. После теоретического появления антиэлектрона открытие других античастиц уже не представляло собой концептуальной сложности. Впечатление усиливается еще и тем, что Дираку потребовалась для этого математика, которая вовсе не лежала на поверхности{107}.
Но еще удивительнее произошедшее становится при взгляде с высоты знания, накопленного позднее. Теория дырок в море электронов с отрицательной энергией оказалась неверной или, во всяком случае, совершенно ненужной. Необоснованной оказалась и исходная мотивировка заменить уравнение Клейна – Гордона на какое-то другое, чтобы избежать отрицательных вероятностей. Как выяснилось, и уравнение Клейна – Гордона можно понимать таким образом, что отрицательных вероятностей не возникает, и в уравнение Дирака, если его понимать, как это сначала подразумевалось, отрицательные вероятности все-таки проникают.
Теория Дирака была лучшим возможным приближением к новому уровню понимания, достигнутому позднее. Она запустила процесс, который привел к грандиозному переосмыслению взглядов на фундаментальное содержание Вселенной. Отправная точка тут в том, что женитьба (словоупотребление, восходящее к самому Дираку) квантовой механики на теории относительности не позволяет квантовой механике оставаться теорией одной частицы, даже если «мы взяли всего один электрон».
Электроны и позитроны могут пропадать, аннигилируя друг с другом; их энергия и импульс, конечно, не исчезают в никуда, а достаются свету, но количество частиц интересующего нас вида тем не менее меняется. (До сих пор я для простоты говорил не об импульсе, а о скорости, и ошибки в том не было, но сейчас для точности все-таки понадобится импульс; в ньютоновской механике это просто скорость, помноженная на массу, а для фотона – его энергия, деленная на скорость света.) Возможен и обратный процесс, когда сверхсильное электрическое поле создает пары электрон – позитрон. Количество частиц не сохраняется. (Намек на то, что одним электроном не обойтись, можно было усмотреть уже в необходимости дираковского моря.)
Вместо уравнения для одной частицы потребовалась теория переменного числа частиц. Уже в 1932 г. ее основы сформулировал Фок, а также Паули совместно с Вайскопфом (в статье, которую неизменно резкий в высказываниях Паули называл «антидираковской»). Адекватная картина потребовала нового языка. В его основе лежали, во-первых, главная черта квантовой механики – комбинирование различных возможностей в волновой функции, а во-вторых,
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев