Books-Lib.com » Читать книги » Психология » Почему. Руководство по поиску причин и принятию решений - Саманта Клейнберг

Читать книгу - "Почему. Руководство по поиску причин и принятию решений - Саманта Клейнберг"

Почему. Руководство по поиску причин и принятию решений - Саманта Клейнберг - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Психология книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Почему. Руководство по поиску причин и принятию решений - Саманта Клейнберг' автора Саманта Клейнберг прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

827 0 01:37, 21-05-2019
Автор:Саманта Клейнберг Жанр:Читать книги / Психология Год публикации:2017 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Почему. Руководство по поиску причин и принятию решений - Саманта Клейнберг", которую можно читать онлайн бесплатно без регистрации

О книге Понятное руководство по поиску и анализу причинно-следственных связей. Может ли употребление кофе продлить жизнь? От кого вы заразились гриппом? Что заставляет расти цены на акции? Каждый раз, когда вы выбираете для себя подходящую диету, вините кого-то за испорченные выходные или принимаете инвестиционные решения, вам требуется понять, почему происходят те или иные вещи. Именно знание причинно-следственных связей помогает предсказывать будущее, объяснять прошлое и вмешиваться в ход событий, чтобы вызывать изменения. Наука о причинно-следственной связи затрагивает различные области знания - медицину, информатику, психологию и экономику. Автор этой книги доступно рассказывает, что такое причинно-следственная связь, объясняет, почему мы часто ошибаемся в ее определении, на основе каких данных можно делать правильные выводы и принимать эффективные решения. Прочитав эту книгу, вы научитесь искать и анализировать информацию, выявлять причинно-следственные связи, проверять свои гипотезы и использовать полученные знания для принятия решений. Для кого эта книга Для аналитиков, исследователей, психологов, экономистов и всех, кто имеет дело с массивами информации и хочет научиться критическому мышлению.
1 ... 34 35 36 37 38 39 40 41 42 ... 93
Перейти на страницу:

Именно на подобный тип общей причины нередко возлагают вину, когда одна переменная, кажется, делает другую более вероятной, но в действительности ее причиной не служит. К примеру, если рецессия приводит одновременно к снижению инфляции и безработице, можно решить, что каждый из этих факторов повышает шансы на проявление другого. Мы просто берем пары переменных и интересуемся, усиливает ли одна из них вероятность другой.

Есть и такая методика работы со смешиванием эффектов из-за общих причин (когда измеряются все переменные) – выяснить, можно ли с помощью одной переменной оправдать корреляции между другими. Это ключевой атрибут множества вероятностных подходов, разработанных философами (такими как Саппс (1970), Гуд (1961) и Рейхенбах (1956)), на котором построены вычислительные методы выведения причин по имеющимся данным.

Скажем, некое заболевание (D) вызывает утомляемость (F) и обычно лечится определенным лекарством (М). Идея в том, что смена препарата не приведет к улучшению состояния пациента (утомляемости), если проблема вызвана только болезнью и не решается лекарством. Если заболевание остается константой, другие переменные не дают никакой информации друг о друге. Концепция общей причины, которая подобным образом разделяет следствия, называется экранированием[212].

Обратимся к диаграмме на рис. 5.5 (а). Есть лекарство, и есть усталость; похоже, первое повышает вероятность второй. Серый столбец выше для усталости, чем для неусталости, показывая, что вероятность выше для случая, когда лекарство истинно, чем ложно. Но как только мы разделим варианты, когда человек болен и когда нет (рис. 5.5 (б) и 5.5 (в)), вероятность усталости уравнивается, вне зависимости от значения препарата. Таким образом, лечение не меняет возможность усталости, как только мы получаем знание о болезни.


Почему. Руководство по поиску причин и принятию решений

Рис. 5.5. Если не принимать во внимание состояние заболевания, кажется, что M и F коррелируют. Если, однако, учитывать этот фактор, корреляции нет (F равновероятен независимо от истинности М)


Подобный тип разделения также может иметь место в цепи событий. Скажем, болезнь приводит к назначению лекарства, и здесь оно действительно вызывает усталость как побочный эффект. Если отношения D → M и M → F истинны, мы также обнаружим, что болезнь повышает вероятность усталости. Однако часто требуется выявить самые непосредственные причинные взаимосвязи, чтобы осуществить более прямые вмешательства. Чтобы избежать появления симптома, нужно отменить лекарство или перейти на другое; но, если мы придем к ошибочному заключению, что как болезнь, так и лекарство провоцируют усталость, мы не сможем узнать, что смена препарата могла бы предотвратить возникновение симптома. И снова, если мы ставим условием М, вероятностное отношение между D и F исчезает.

Как обычно, ни один метод не совершенен, и успех зависит на самом деле от измерения общей причины. То есть, если рецессия приводит одновременно к снижению инфляции и безработице и мы не знаем, имеет ли место рецессия, нет возможности использовать условие экранирования, чтобы выяснить, не ложна ли видимая причинная зависимость между инфляцией и безработицей. Получается, реальные мы найдем взаимосвязи или ошибочные, целиком зависит от наличия верного набора переменных.

Эта проблема вновь выйдет на передний план, когда в главе 6 мы затронем вычислительные методы. Но, хотя на базе ряда сценариев мы и располагаем несколькими способами отыскать скрытую общую причину, это не решает проблему вычислительных методов в целом.

На этом, однако, история не заканчивается. Иногда просто нет единственной переменной для экранирования двух следствий. Скажем, Алиса и Боб любят занятия по машинному обучению[213] и предпочитают те, которые назначены на послеобеденное время. Тогда, взяв условием либо содержание курса, либо время, мы не сможем полностью экранировать такие переменные, как выбор занятий Алисой и Бобом. Если известно только время занятий, то запишется на них Боб или нет, действительно дает информацию о выборе Алисы, так как этот фактор становится косвенным индикатором содержания курса. Нет единственной переменной, экранирующей А и Б друг от друга.

И если мы добавим переменную, которая будет истинной, только если курс одновременно и начинается после полудня, и посвящен машинному обучению, этот фокус поможет. Но, чтобы понять необходимость этой более сложной переменной, нужно знать кое-что о проблеме и потенциальных причинных взаимосвязях, а это не всегда возможно.

Пока мы вообще не затрагивали временные паттерны (приняли как данность, что причина происходит до следствия). Однако иногда используется фактор, способный объяснить корреляцию, который мы обычно не включаем в свой анализ, – изменение взаимозависимости во времени.

Чтобы представить ситуацию, когда экранирование не срабатывает, вспомним примеры индетерминизма из начала этой главы. Если некое оборудование неисправно, это может помешать идеальному экранированию его эффектов. Чтобы это проиллюстрировать, часто используется пример с неисправным тумблером, одновременно включающим телевизор и лампу (он не всегда замыкает цепь). Если телевизор работает, горит и лампа, и наоборот, но, бывает, оба прибора не активированы. Для решения этой проблемы можно добавить четвертую переменную – замкнутую цепь; но, чтобы узнать о ее необходимости, нужно иметь некоторое понимание о структуре проблемы, а оно есть не всегда.

Один из вариантов – не рассматривать точную взаимосвязь, но изучить, будет ли возможная причина иметь большое значение для следствия, если другие факторы останутся неизменными. До сих пор мы анализировали все ситуации, при которых то, что нельзя считать причиной, может все-таки повышать вероятность следствия; но возможно также, что истинная причина не повысит эту вероятность. Один из очевидных примеров – это причина, предотвращающая следствие (например, вакцина, которая предупреждает болезнь). С такими случаями разобраться легко, поскольку мы можем либо переопределить факторы в терминах снижения вероятности, либо применить отрицание следствия как интересующий нас исход (то есть «неболезнь»). Но как насчет иных ситуаций, когда положительная причина снижает вероятность или вообще не оказывает никакого действия? Здесь ключевые факторы – это выборка, на основе которой берется информация, и степень детализации переменных.

Парадокс Симпсона

Представим, что вы пациент, которому надо выбрать одного из двух врачей. У доктора А (Алиса) смертность пациентов, проходивших лечение от определенной болезни, составляет 40 %, у доктора B (Бетти) – 10 %. Если исходить только из этой информации, легко выбрать Бетти; на самом деле у вас недостаточно данных, чтобы принять подобное решение.

1 ... 34 35 36 37 38 39 40 41 42 ... 93
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: