Читать книгу - "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов"
Аннотация к книге "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов", которую можно читать онлайн бесплатно без регистрации
Рассказ о фундаментальной научной картине мира в развитии от более наглядного к более абстрактному: от брошенного камня до объяснения уравнений Эйнштейна и Шрёдингера. Человек разбирается в устройстве Вселенной, наблюдая за движением и его последствиями, догадываясь о правилах, которые регулируют все, что происходит, и получая подсказки о скрытых частях мира или о новых правилах из несоответствий между теоретически ожидаемым и реальным движением: знаменитые примеры включают предсказанное существование Нептуна, Планеты 9 и невидимого вещества в галактиках, причины ускоренного расширения Вселенной, квантовую природу теплового излучения. Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель». В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие. Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.
(это запутанное состояние, потому что все «верхние» горбы волновых функций всех электронов собрались вместе в одном слагаемом, а все «нижние» горбы – в другом). Здесь фигурируют страшно длинные произведения, по одному множителю на каждый электрон системы. У каждого электрона своя волновая функция, но ее часть заметно отлична от нуля только в той области пространства, которая отвечает состоянию прибора «вверх»; аналогичный смысл имеет и Какой-то один из N = 1024 электронов вызовет умножение волновой функции на ограничивающий профиль уже примерно через 10–8 с (это, по порядку величины, есть результат деления ста миллионов лет ожидания для одного электрона на число электронов). При этом одно из длинных произведений (например, отвечающее состоянию прибора «вверх») останется практически без изменений, а другое (состояние прибора «вниз») умножится на число, которое во всех практических смыслах неотличимо от нуля. В результате стрелка прибора сама собой локализуется в положении «вверх». Если перед двумя слагаемыми имелись различные коэффициенты, то в зависимости от их величины предпочтительнее будет случаться коллапс в одной или другой ветви (на рис. 11.9 слева два горба показаны неодинаковыми, что отражает наличие не сильно различающихся коэффициентов); свойства самопроизвольного коллапса таковы, что воспроизведется правило Борна! И, как мы видим, ждать коллапса тем меньше, чем больше система, с которой взаимодействует интересующий нас электрон или любая другая квантовая система.
Один из многих сколлапсирует довольно скоро. Этого достаточно
Подход ГРВ уточнялся, но в его улучшенные варианты вдаваться здесь ни к чему, поскольку основная идея спонтанного коллапса уже ясна. Авторы концепции постулируют новый закон природы. Относится ли этот постулат к числу изобретений сверх меры? Из него, между прочим, можно вывести и очень ясную связь между абстракцией волновой функции и базовыми элементами реальности в нашем трехмерном пространстве – я бы даже сказал, связь несколько неординарную в своей ясности. Как мы видели, волновая функция любой системы из нескольких частиц не обладает значениями в трехмерном пространстве; но мы знаем, что в огромном числе ситуаций (например, в атоме) электрон локализован в пределах некоторой области, и про него хочется думать, что сам факт его существования там возможен безотносительно ко всему остальному во Вселенной. Поэтому требуются «мостики» от волновых функций к элементам реальности, существующим локально, т. е. имеющим относительно определенное пространственное положение. В ГРВ-подходах, как заметил Белл, уже имеется нечто, обладающее желаемым статусом локального существования в нашем обычном пространстве: сами ограничительные профили! Волновую функцию ψ(q1, q2, q3, q4, …), зависящую от многих точек, никак не впихнуть в наше пространство, но ее коллапс всегда представляет собой «сужение» вблизи какой-то точки в физическом пространстве. Ограничивающие профили поэтому – уже готовые привязки к нашему пространству. Правда, они не существуют постоянно, а возникают только в момент коллапса; из-за того что они случаются то здесь, то там, о них часто говорят как о «вспышках». Волновая функция, развивающаяся во времени под управлением уравнения Шрёдингера где-то в математическом пространстве, приобретает связь с физической реальностью в трехмерном пространстве из-за последовательности вспышек. А пока нет вспышек, в нашем пространстве ничего нет, продолжает свою мысль Белл. В пространстве, где мы обитаем, в основном пусто.
Да?! А как же насчет окружающих предметов? Возьмем, например, человеческое тело. В нем порядка 1028 электронов; следовательно, каждую секунду в нем «вспыхивают» – появляются в пространстве – около триллиона (1012) электронов. (Атомных ядер в несколько раз меньше, устроены они сложнее, но и про них следует предполагать нечто подобное.) Получается довольно своеобразный (даже, пожалуй, экстремальный) вариант пуантилизма (рис. 11.10), трехмерный и с непрерывно перерисовываемым «изображением»: около десяти тысяч точек, вспыхивающих за секунду в каждом кубическом миллиметре, вполне достаточно, чтобы, несмотря на некоторую прерывистость картины, дать представление о контурах и вообще об устройстве тела. Правда, не все так здорово уже с отдельной клеткой, потому что в ней происходит всего лишь несколько вспышек в секунду, и мы вынуждены заключить, что клетка как таковая ничем не наполнена, что она есть лишь арена, где появляются и исчезают различные актеры, всего по нескольку за секунду. Эту картину можно, вероятно, согласовать с тем фактом, что, глядя в микроскоп, мы видим клетку вовсе не пустой: как только в деле оказывается замешан микроскоп, волновые функции его электронов запутываются с волновой функцией, описывающей содержимое клетки, обеспечивая надежное снабжение всей системы «вспышками», в результате чего мы и видим клетку как клетку, а не как пустое вместилище[288].
Рис. 11.10. Пуантилизм в живописи: сборка мира из точек требует работы воображения
Справедливости ради надо сказать, что ГРВ-теорию можно снабдить и другим рецептом по построению элементов реальности: принять, что по пространству «плавно» (и на этот раз – постоянно, а не только в моменты коллапсов) распределена масса с плотностью, которая определяется квадратом волновой функции с помощью следующего трюка. Если перед нами волновая функция десяти электронов – зависящая от десяти точек в пространстве, – а мы интересуемся плотностью массы в точке q, то мы десять раз усредняем квадрат волновой функции по всем возможным положениям девяти электронов – всех, кроме сначала первого, затем второго и так далее, а этот первый, затем второй и так далее по очереди помещаем в выбранную точку q. Полученные результаты усреднений мы затем складываем[289]. За постоянное, а не «вспышечное» существование элементов реальности приходится платить их размазанностью по пространству. Во всех тех случаях, когда волновая функция (скажем, электрона) имеет несколько областей локализации (как двугорбая кривая на рис. 11.9 слева), масса электрона буквально распределена по этим областям. Элементарную частицу приходится считать в некотором роде делимой, да еще и в произвольных пропорциях. Правда, все это ненаблюдаемо само по себе так же, как и бомовские частицы ненаблюдаемы сами по себе: как только мы
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев