Читать книгу - "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов"
Аннотация к книге "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов", которую можно читать онлайн бесплатно без регистрации
Рассказ о фундаментальной научной картине мира в развитии от более наглядного к более абстрактному: от брошенного камня до объяснения уравнений Эйнштейна и Шрёдингера. Человек разбирается в устройстве Вселенной, наблюдая за движением и его последствиями, догадываясь о правилах, которые регулируют все, что происходит, и получая подсказки о скрытых частях мира или о новых правилах из несоответствий между теоретически ожидаемым и реальным движением: знаменитые примеры включают предсказанное существование Нептуна, Планеты 9 и невидимого вещества в галактиках, причины ускоренного расширения Вселенной, квантовую природу теплового излучения. Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель». В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие. Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.
Закон природы с таким «умным» действием возможен. Надо только предположить, что волновая функция каждого электрона определенным образом коллапсирует – «суживается» – в среднем каждые 100 000 000 (сто миллионов) лет. Уравнение Шрёдингера для каждого электрона кратковременно нарушается случайным образом примерно с этой периодичностью (стоит сразу же обратить внимание, что выслеживать такое событие для одного отдельно взятого электрона – занятие малоперспективное). Редкие события самопроизвольного коллапса имеют точное математическое описание: при каждом таком событии поправляется зависимость волновой функции от точек в пространстве – она умножается на узкий ограничивающий профиль типа более «острой» кривой, показанной на рис. 11.8 слева. Главное свойство этого профиля – очень быстро становиться практически равным нулю при удалении от своего центра. На том же графике изображена такая зависимость волновой функции от одной из координат, в силу которой она заметным образом отлична от нуля в более широком интервале. Умножение на узкий профиль сужает эту волновую функцию: ее новая зависимость от рассматриваемой координаты изображена на рис. 11.8 справа. В трехмерном пространстве профиль является одинаково узким по всем направлениям, так что координатная зависимость волновой функции «суживается» по всем направлениям. Среднее время ожидания такого сужения (около 100 млн лет) – новая фундаментальная постоянная природы; ширина регулирующего профиля – еще одна постоянная, тоже имеющая странное на первый взгляд значение около 10–5 сантиметра (десятая доля микрона). Это расстояние в сотни или даже в тысячу раз больше характерного размера атома, а это значит, что для волновой функции электрона в атоме картина в некотором роде противоположна той, что изображена на рис. 11.8 слева: область, где волновая функция сколько-нибудь заметно отлична от нуля, в 1000 раз уже, чем профиль, а это значит, что вся эта область помещается там, где высота профиля максимальна – и где его «крыша» практически плоская. Но – кажется, я забыл сразу сказать – высота этой крыши равна 1, так что умножение на эту единицу ничего с волновой функцией не делает. Узкие волновые функции практически не меняются ни за сотни миллионов лет, ни за какое другое время, в атоме все остается без изменений! Правда ведь, здорово?
Рис. 11.8. Слева: зависимость величины волновой функции от координаты точки (темная кривая) отлична от нуля в некотором интервале. Ограничивающий профиль (серая кривая) заметно отличен от нуля в более узком интервале. Справа: умножение волновой функции на ограничивающий профиль сужает пространственную область, в которой волновая функция может сколько-нибудь заметно отличаться от нуля
Зато (раз в 100 млн лет) радикально меняются волновые функции с «растекшейся» зависимостью от точек в пространстве. Например, если электрону доступны две дороги (скажем, пролететь сверху или снизу в приборе Штерна – Герлаха), то в его волновой функции это отражено примерно так, как показывает двугорбая кривая на рис. 11.9 слева: горбы отвечают двум разным пространственным областям, и электрон с той или иной вероятностью может быть обнаружен в каждой из них, что (с некоторой долей условности) закодировано в его волновой функции a · |в области 1⟩ + b · |в области 2⟩. На такую волновую функцию умножение на ограничивающий профиль производит радикальный эффект: шансы не исчезнуть остаются только у какого-то одного горба, как это показано на рис. 11.9 справа; во всех точках вдали от центра профиля волновая функция умножается на число, практически равное нулю; в результате электрон оказывается локализован в пределах не более чем 10–5 сантиметра где-то в одном месте.
Рис. 11.9. Слева: волновая функция (темная кривая) заметно отлична от нуля в двух различных областях, показанных в одномерном случае как два интервала. Ограничивающий профиль (серая кривая) может возникнуть только в одной из этих областей. Справа: умножение волновой функции на ограничивающий профиль оставляет только один из двух интервалов (областей), где волновая функция заметно отлична от нуля
Пора сказать, где же случаются эти коллапсы – умножения на ограничивающий профиль. Это, как и выбор момента для такого события, тоже случайная величина, но случайность регулируется вероятностями, а эти вероятности – вы правильно подумали! – определяются с учетом имеющейся волновой функции. Резюме в довольно нестрогом виде состоит в том, что коллапс вероятнее там, где волновая функция «выше» (при этом наиболее чувствительны к результату коллапса, как мы видели, «широкие» волновые функции). Математические детали организованы таким образом, что коллапс и в самом деле происходит чаще всего там, где «измерение» скорее всего и обнаружило бы частицу. (Конечно, никаких «измерений» в качестве причины коллапса здесь не требуется. Коллапс происходит спонтанно, но, как мы очень скоро увидим, в присутствии макроскопического прибора все выглядит в точности так, как если бы это самое присутствие вызывало коллапс.) Я опустил бы подробности, если бы в них не участвовало гауссово размытие, по разным поводам применяемое при обработке изображений. Математически при гауссовом размытии используется в точности такой же ограничивающий профиль (он и называется гауссовым – и в методах обработки изображений, и в теории спонтанного коллапса). Правда, для реализации размытия надо не умножать его на функцию, описывающую изображение, а выполнить операцию так называемой свертки с ней. Центр профиля для этого помещается в выбранный пиксель, после чего содержимое пикселя заменяется на среднее по всем пикселям, но в это среднее более далекие пиксели вносят все меньший вклад, потому что их содержимое умножается на соответствующую высоту профиля, которая быстро убывает по мере удаления от центра[287]. Точно так же определяется и вероятность коллапса с центром в той или иной точке! Требуется вычислить свертку квадрата волновой функции с ограничивающим профилем: там, где результат свертки больше, вероятность коллапса выше.
Эти идеи спонтанного коллапса обычно обозначают аббревиатурой ГРВ, образованной из первых букв фамилий Гирарди, Римини и Вебера. Они решили, что «коллапсу быть», но полностью устранили магическое влияние измерительного прибора и вообще измерения – ценой постулата, что коллапс происходит самопроизвольно. Тем не менее сами по себе измерения никто не отменял, и ГРВ должны объяснить, каким же образом в результате измерения прибор оказывается в каком-то одном состоянии – причем приходит в него заметно быстрее, чем через 100 млн лет. Они и объясняют. Сразу после взаимодействия с электроном прибор попробовал было находиться в состоянии без определенного положения стрелки индикатора – волновые функции всех электронов (и всего остального в нем) были двугорбые. Другими словами, прибор находился в сумме двух состояний – в одном он указывает
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев