Читать книгу - "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов"
Аннотация к книге "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов", которую можно читать онлайн бесплатно без регистрации
Рассказ о фундаментальной научной картине мира в развитии от более наглядного к более абстрактному: от брошенного камня до объяснения уравнений Эйнштейна и Шрёдингера. Человек разбирается в устройстве Вселенной, наблюдая за движением и его последствиями, догадываясь о правилах, которые регулируют все, что происходит, и получая подсказки о скрытых частях мира или о новых правилах из несоответствий между теоретически ожидаемым и реальным движением: знаменитые примеры включают предсказанное существование Нептуна, Планеты 9 и невидимого вещества в галактиках, причины ускоренного расширения Вселенной, квантовую природу теплового излучения. Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель». В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие. Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.
Конечно, электрон не вращается
Как же все просто, когда ответ известен; конечно, электрон и не вращается. Но что следовало думать первооткрывателям?
А Эренфест ответил: «Поздно, я ее уже отправил». ‹…› Я помню, как Эренфест сказал мне: «Знаете, это отличная идея, хотя может оказаться и неправильной. Но у вас еще нет репутации, поэтому вам терять нечего». ‹…›
Наша заметка была отослана и опубликована. Прямо на следующий день я получил письмо от Гайзенберга, где он пишет про нашу mutige Note (смелую заметку). Я и не знал, что требовалась смелость, чтобы такое опубликовать. Никаким храбрецом я не был. Я думаю, письмо Гайзенберга у меня сохранилось. Он там пишет формулу… Я в ней не понял ну совсем ничего. А потом он где-то спрашивает: «А что вы сделали с множителем 2?» Каким еще множителем?
Ситуация с множителем 2 утряслась через некоторое время уже с участием других людей и привлечением дополнительных идей из специальной теории относительности. В самом начале 1926 г. появилось уравнение Шрёдингера, а весной Паули придумал спиноры для трехмерного пространства. Как мы теперь хорошо знаем, такой спинор – это пара чисел; правила игры таковы, что одно число выражает потенциальную возможность для электрона иметь компоненту спина 1/2 ħ, а другое – компоненту –1/2 ħ.
В начале 1928 г., когда уравнение Шрёдингера уже работало вовсю и его даже уже «скрестили» со спинорами, Дирак всерьез озадачился проблемой, которой за два года до того не стал заниматься Шрёдингер: его, Шрёдингера, уравнение ничего не знало про скорость света и принцип относительности. Как все-таки можно систематически соединить идеи квантового описания мира с требованиями специальной теории относительности? Получилось так, что Дирак решил эту задачу для частиц со спином 1/2, т. е. для электронов. Исходно он и не подозревал о математических тонкостях с одним и двумя полными поворотами, но, как бы то ни было, ему пришлось изобрести спиноры для четырехмерного пространства-времени. Это, как он открыл для себя и для всей физики XX в., четверки чисел, которые, однако, совсем не похожи своим поведением при поворотах в пространстве-времени на «обычные» четверки чисел, связанные с пространством-временем, т. е. векторы. (Внутри математики, как затем оказалось, все идеологическое обеспечение было уже лет пятнадцать как готово, не было только знания, что появившиеся там довольно абстрактные и сами по себе не слишком заметные спиноры – часть реального мира.) Уравнение Дирака, которое его создатель записал как уравнение для электрона, «не хотело» описывать одни только электроны: в комплекте с ними оно буквально навязывало еще какую-то другую частицу с тем же спином 1/2 – «навязывало» в точности из-за того, что спиноры в четырехмерном пространстве-времени имеют четыре компоненты, из которых только две требовались для описания электрона, а две другие, определенным образом с ними связанные, должны были описывать что-то еще. После нескольких неудачных попыток объяснения, что это такое, пришлось постулировать существование в природе новой, доселе неизвестной частицы, к тому же являющейся античастицей к электрону – в смысле, который тогда и начал постепенно выясняться. Эта частица, названная позитроном, была обнаружена экспериментально несколько лет спустя[230].
Уравнение Дирака не только знало о спинорах и позитронах (и полностью разрешило ситуацию с «лишним множителем 2»), но и позволило уточнить сдвиг уровней энергии в атоме водорода из-за тонких эффектов, связанных со спином. И тем не менее оно приводило к странным выводам о поведении электрона на очень малых расстояниях порядка ħ/(mc). Мы уже встречались с этими расстояниями на нашей прогулке, но тогда забежали вперед – спрямив все сложности исторического развития, перепрыгнули к современному пониманию квантового мира в терминах квантовых полей. Отмеченные странности, собственно, и подтолкнули развитие полевого описания. Уравнение Дирака, обобщавшее уравнение Шрёдингера с учетом специальной теории относительности, оказалось только частью более фундаментальной истории про квантовые поля.
*****Лишняя половина, и такая разница. Довольно удивительно, но разделение всех полей и их квантов на бозоны (коллективистов) и фермионы (ненавистников себе подобных) управляется спином, причем вот каким изящным образом: все поля с полуцелыми спинами (1/2, с которым мы встречались; не так уж сложно описать и поле со спином 3/2) – ненавистники, а все поля с целыми спинами (0, 1, 2) – коллективисты. Едва ли где-либо еще столь радикальные качественные различия в свойствах определяются различием на одну вторую в одном числе. Этот факт не просто выражает результат наблюдений, но и скрывает в себе теорему. Массовое поведение частиц непосредственно не записано в свойствах их полей, но, опираясь на самые общие положения, которые, как мы считаем, приложимы ко всему во Вселенной, можно вывести (доказать), что частицы с целым спином – бозоны, а частицы с полуцелым спином – фермионы. Среди этих общих положений – принцип относительности (собственно, вся специальная теория относительности) и причинность; есть требования и более технические, но тоже необходимые, по нашим представлениям, для осмысленности мира. Поэтому понятия «частицы/поля с целочисленным спином» и «бозоны» (т. е. коллективисты) обычно употребляются как синонимы. Аналогичным образом все привыкли фактически отождествлять понятия «частицы/поля с полуцелым спином» (что есть всего лишь утверждение о спине) и «фермионы» (заявление о нетерпимости к себе подобным). Одно из первых доказательств теоремы о связи двух понятий (спина и статистики) предложил в 1940 г. Паули.
Спин определяет тип массового поведения
Нехитрый математический факт состоит в том, что сумма и разность двух полуцелых чисел всегда дают целое число: 1/2 + 1/2 = 1, 1/2 – 1/2 = 0, 3/2 – 1/2 = 0 и т. д. Его проявления в природе неожиданно глубоки: два фермиона могут собраться в бозон, а создав бозон, в корне изменить характер своего поведения (такое явление лежит в основе эффекта квантовой природы, но макроскопического масштаба – сверхпроводимости). Но сделать фермион, имея только бозоны, уже невозможно. Ситуация до некоторой степени сродни тому факту, что из двух отрицательных чисел можно сделать положительное, перемножив их, но перемножение положительных чисел дает только положительные.
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев