Читать книгу - "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов"
Аннотация к книге "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов", которую можно читать онлайн бесплатно без регистрации
Рассказ о фундаментальной научной картине мира в развитии от более наглядного к более абстрактному: от брошенного камня до объяснения уравнений Эйнштейна и Шрёдингера. Человек разбирается в устройстве Вселенной, наблюдая за движением и его последствиями, догадываясь о правилах, которые регулируют все, что происходит, и получая подсказки о скрытых частях мира или о новых правилах из несоответствий между теоретически ожидаемым и реальным движением: знаменитые примеры включают предсказанное существование Нептуна, Планеты 9 и невидимого вещества в галактиках, причины ускоренного расширения Вселенной, квантовую природу теплового излучения. Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель». В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие. Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.
Рис. 10.15. Танглоид. Дальние концы трех нитей привязаны к чему-то неподвижному. Дощечку или картонку, сквозь которую продеты нити, поворачивают вокруг оси, идущей параллельно нитям, на один или несколько полных оборотов (360°, 720° и т. д.). Перекрученные в результате нити требуется распутать, обводя их по очереди вокруг дощечки, но не поворачивая ее саму. Задача легко решается при закручивании на четное число полных оборотов и не имеет решения для нечетного
В одном полном повороте есть что-то, что пропадает в двух полных поворотах.
Поле со спином 1/2 – это тоже наборы из нескольких «одинаковых» колебательных систем, снабженных различными метками. Но из-за специфики полуцелого значения требуется, чтобы они складывались в такое «цельное и осмысленное», которое ведет себя при поворотах похоже на дощечку-танглоид: меняется при произвольных поворотах так, что не остается неизменным при одном полном повороте на 360° вокруг любой оси, но не меняется при двух полных поворотах. Только это должны быть не дощечки с нитками, а какие-то наборы чисел – если такие найдутся, то их поведение при поворотах и определит, как ведут себя при поворотах колебательные системы поля с различными метками.
Но что за объекты, построенные из чисел, могут быть чувствительны к разнице между одним и двумя полными поворотами? Скажем, компоненты стрелки/вектора для этого совершенно не годятся: после одного полного поворота вектор остается таким же, каким был, и никаких отличий двух поворотов от одного он почувствовать не в состоянии. Тем не менее существуют математические объекты, которые можно научить вести себя при поворотах так, чтобы они возвращались в исходное состояние только после двух полных оборотов (а после одного полного – нет). Их можно придумать и для нашего трехмерного пространства, и для четырехмерного пространства, и для четырехмерного пространства-времени[228]. Они называются спинорами. Каждый спинор – это, конечно, тоже набор чисел, но их преобразование при поворотах таково, что поворот на 360° не возвращает их в исходное состояние, а приводит к умножению их на минус единицу. Требуется изящная математика, чтобы выяснить, набор из скольких чисел можно обучить таким изысканным манерам. Не вдаваясь в полуторастепенные детали, можно пользоваться следующим правилом: если сами повороты выполняются в пространстве размерности d и это число d четное, то спинор составлен из 2d/2 чисел. В четырехмерном пространстве, или пространстве-времени, т. е. при d = 4, это дает 22 = 4 числа. Получается столько же чисел, сколько составляют вектор в четырехмерном пространстве, но это совсем другие четверки чисел: при поворотах они изменяются по иным законам. Если размерность пространства нечетна, то способ вычисления слегка меняется: спинор состоит из 2(d – 1)/2 чисел. Для трехмерного пространства это дает 21 = 2. Это значит, что пары чисел можно сделать чувствительными к поворотам в трехмерном пространстве таким образом, чтобы любой поворот на 360° приводил к умножению на минус единицу.
Итак, в четырехмерном пространстве-времени поле спина 1/2 имеет четыре компоненты. Каждая колебательная система в этом поле повторена четыре раза и копии снабжены такими метками, что вся четверка меняется при поворотах в пространстве-времени так, как это делают спиноры; в этом смысле четверки и составляют «цельное и осмысленное». Кванты этого поля – электроны и их античастицы (позитроны). Они делят между собой четыре составляющие спинора: две сообщают об электронах, а две другие – о позитронах. Сообщают же они, что каждый электрон несет внутри себя количество вращения, никак не связанное с пребыванием в атоме или где бы то ни было еще, а определяемое самим фактом его, электрона, существования. Интенсивность вращения при этом однозначно фиксирована и для электронов, и для позитронов: она (вспоминая общее правило) равна s (s + 1) ħ2, где сейчас надо взять s = 1/2.
Спин электрона равен 1/2
Одну вторую из последнего равенства и называют спином электрона. Спин электрона – это квантовое число, задающее его внутреннее количество вращения и равное 1/2. Теперь понятно, как обстоит дело с внутренней свободой электрона: для компоненты спина, как всегда, возможны значения из интервала от – s до s с шагом 1, но сейчас интервал этот получается не слишком большим: он включает только сами числа –1/2 и 1/2 (расстояние между ними как раз равно единице). Таким разнообразием внутренней жизни и может похвастаться электрон: демонстрировать компоненту спина –1/2 ħ или 1/2 ħ вдоль любого выбранного направления.
Это и решает «загадку удвоения» числа состояний для электронов в атомах. Периодическая таблица элементов спасена. Как именно организация ее клеток в периоды определяется свойствами состояний (n, , m) «от Шрёдингера» и спином, несколько подробнее обсуждается в добавлениях к этой прогулке.
Спин электрона проявляет себя каждый раз, когда электрон оказывается в магнитном поле. Из-за наличия и спина, и заряда электрон реагирует на магнитное поле так же, как реагировал бы магнит: стремится ориентироваться вдоль магнитного поля. Такой магнит всегда одинаково сильный, ведь значение s фиксировано числом 1/2. А когда электрон находится в атоме, он, кроме того, проявляет свойства магнита во всех случаях, когда устраивается там в состоянии с ненулевым количеством вращения (это означает, что буква равна не нулю, а одному из значений 1, 2, 3, …). Это уже похоже на факт из обычной жизни: когда электрические заряды вращаются – в обычном, а не ускользающем «квантовом» смысле, – они создают магнит. Электрон в атоме не вращается вокруг атомного ядра точно в том же смысле, но его способ пребывания в атоме с любым , кроме нуля, тоже создает магнит – тем более сильный, чем больше это число . Таким образом, у электрона в атоме есть два способа проявить себя в качестве магнита: за счет интенсивности вращения , относящейся к состоянию в атоме, и за счет собственного спина, никак с атомом не связанного. По причинам, которые спрятаны довольно глубоко, спин электрона создает магнит в два раза эффективнее, чем количество вращения электрона в атоме. Это выражается в том, что формулы, по которым значение буквы s (да, равное 1/2) и значение буквы (уж какое случится) определяют силу получающегося магнита, практически одинаковы, но в случае спина там неожиданно появляется лишний множитель 2, усиливающий эффект спина в создании магнита.
В магнитном
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев