Books-Lib.com » Читать книги » Домашняя » Как не ошибаться. Сила математического мышления - Джордан Элленберг

Читать книгу - "Как не ошибаться. Сила математического мышления - Джордан Элленберг"

Как не ошибаться. Сила математического мышления - Джордан Элленберг - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Как не ошибаться. Сила математического мышления - Джордан Элленберг' автора Джордан Элленберг прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

1 063 0 16:09, 25-05-2019
Автор:Джордан Элленберг Жанр:Читать книги / Домашняя Год публикации:2017 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0
Купить книгу

Аннотация к книге "Как не ошибаться. Сила математического мышления - Джордан Элленберг", которую можно читать онлайн бесплатно без регистрации

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее. Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится. На русском языке публикуется впервые.
1 ... 3 4 5 6 7 8 9 10 11 ... 24
Перейти на страницу:
Ознакомительный фрагмент

На довольно большом удалении от своего эмпирического источника и тем более во втором и третьем поколении, когда математическая дисциплина лишь косвенно черпает вдохновение из идей, идущих от «реальности», над ней нависает смертельная опасность. Ее развитие все более и более определяется чисто эстетическими соображениями, оно все более и более становится искусством для искусства. Само по себе это неплохо, если она взаимодействует с примыкающими математическими дисциплинами, обладающими более тесными эмпирическими связями, или если данная математическая дисциплина находится под влиянием людей с исключительно развитым вкусом. Но существует серьезная угроза, что математическая дисциплина будет развиваться по линии наименьшего сопротивления, что вдали от источника поток разветвится на множество ручейков и дисциплина превратится в хаотическое нагромождение деталей и сложностей. Иначе говоря, при большом отдалении от эмпирического источника или после основательного абстрактного «инбридинга» (близкородственного скрещивания. – Ю. Д.) математической дисциплине грозит опасность вырождения.

О какой математике пойдет речь в моей книге?

Если ваше знакомство с математикой ограничивается школьной программой, это означает, что вам известна весьма ограниченная, а в какой-то степени даже ложная версия этого предмета. Школьная математика состоит главным образом из совокупности фактов и правил – фактов, которые нельзя оспаривать, и правил, которые предписаны высшим авторитетом и не подлежат сомнению. Такой подход рассматривает математические концепции как нечто непреложное.

Но математика не неизменна. Даже если речь идет о базовых объектах изучения, таких как числа и геометрические фигуры, наше незнание гораздо больше знания. А то, что мы все же знаем, получено в результате огромных усилий, разногласий и недоразумений. Весь этот труд и смятение тщательно завуалированы в ваших учебниках.

Безусловно, факты фактам рознь. Никогда не было особых споров по поводу того, что 1 + 2 = 3. Но можем ли мы действительно доказать, что 1 + 2 = 3, и как это можно сделать, – вопрос, который блуждает где-то между математикой и философией. Однако это совсем другая история, и мы вернемся к ней в конце книги. Правильность вычислений в данном случае не подлежит сомнению. Проблема кроется совсем в другом. Мы не раз столкнемся с ней на этих страницах.

Математические факты могут быть простыми и сложными, поверхностными и глубокими, что делит математическую вселенную на четыре сектора:


Как не ошибаться. Сила математического мышления

Базовые арифметические факты, такие как 1 + 2 = 3, относятся к категории простых и поверхностных. К этой же категории принадлежат и основные тождества, в частности sin(2x) = 2sin x × cos x или формула корней квадратного уравнения. Возможно, убедить себя в истинности таких тождеств немного труднее, чем в том, что 1 + 2 = 3, но по большому счету они не так уж сложны на концептуальном уровне.

В сегменте сложных и поверхностных фактов находится, например, задача умножения двух десятизначных чисел, или вычисление сложного определенного интеграла, или (при условии, что вы пару лет учились в магистратуре) определение следа Фробениуса на модулярной форме кондуктора 2377. Можно предположить, что по какой-то причине вам понадобится найти ответ на вопрос такого рода, но поиск решения вручную, вне всяких сомнений, покажется слишком раздражающей и невыполнимой задачей. В случае модулярной формы вам, возможно, понадобится серьезное образование даже для того, чтобы понять, о чем идет речь. Однако в действительности знание этих ответов не обогащает понимание окружающего мира.

Сектор сложных и глубоких математических фактов – это именно то, на что тратят большую часть своего времени профессиональные математики, к числу которых отношусь и я. Здесь обитают знаменитые теоремы и гипотезы, такие как гипотеза Римана, последняя теорема Ферма[14], гипотеза Пуанкаре[15], равенство классов P и NP[16], теорема Гёделя и так далее. Каждая из этих теорем касается идей, имеющих глубокий смысл, фундаментальную важность, поразительную красоту и сугубо специальный характер, и каждая из них сама по себе выступает в качестве главного персонажа многих книг{12}.

Но только не моей. То, о чем пойдет речь в настоящей книге, относится к верхнему левому сектору, где находятся простые и глубокие факты. Вы сможете непосредственно, с выгодой для себя использовать представленные здесь математические идеи независимо от того, ограничивается ли ваше математическое образование основами алгебры или охватывает гораздо более широкую область математики. И речь идет не о «фактах самих по себе», таких как простые арифметические утверждения, а о принципах, применение которых выходит далеко за рамки привычных представлений о математике. Мы будем говорить о надежных практических инструментах – их применение поможет вам не совершать ошибок.

Чистая математика представляется чем-то вроде монастыря – спокойное место, надежно защищенное от влияния окружающего мира со всей его суетой и противоречиями. Я вырос в стенах такого убежища. Знакомых мне математически одаренных молодых людей интересовало практическое применение математики в физике или геномике, многих влекла черная магия управления хедж-фондами, но все эти подростковые шатания и проблемы выбора были не для меня[17]. Во время учебы в магистратуре я посвятил себя изучению теории чисел, которую Гаусс называл «королевой математики». Из всех чистых дисциплин это была самая чистейшая – закрытый сад посреди монастыря, где мы размышляли над теми же вопросами о числах и уравнениях, которые занимали умы древних греков и которые едва ли стали менее мучительными за прошедшие две с половиной тысячи лет.

1 ... 3 4 5 6 7 8 9 10 11 ... 24
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: