Books-Lib.com » Читать книги » Домашняя » Как не ошибаться. Сила математического мышления - Джордан Элленберг

Читать книгу - "Как не ошибаться. Сила математического мышления - Джордан Элленберг"

Как не ошибаться. Сила математического мышления - Джордан Элленберг - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Как не ошибаться. Сила математического мышления - Джордан Элленберг' автора Джордан Элленберг прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

1 063 0 16:09, 25-05-2019
Автор:Джордан Элленберг Жанр:Читать книги / Домашняя Год публикации:2017 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0
Купить книгу

Аннотация к книге "Как не ошибаться. Сила математического мышления - Джордан Элленберг", которую можно читать онлайн бесплатно без регистрации

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее. Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится. На русском языке публикуется впервые.
1 ... 15 16 17 18 19 20 21 22 23 24
Перейти на страницу:
Ознакомительный фрагмент


Честно говоря, я не подбрасывал тысячу монет. Вместо этого я поставил перед своим компьютером задачу смоделировать подбрасывание монет. Разве у кого-то найдется столько времени на тысячекратное подбрасывание монеты?

У одного человека нашлось – математик из Южной Африки Джон Эдмунд Керрич, которому дали опрометчивый совет посетить Европу ни больше ни меньше как в 1939 году. Его европейский семестр быстро превратился в незапланированное заключение в концлагере в Дании. Там, где обычный узник, не столь увлеченный статистикой, проводил бы дни заточения, царапая на стене камеры прошедшие дни, Керрич подбрасывал монету (всего 10 тысяч раз) и подсчитывал количество выпаданий лицевой стороной вверх{42}. Его результаты выглядели следующим образом:


Как не ошибаться. Сила математического мышления

Как видите, доля монет, выпавших лицевой стороной вверх, непреклонно стремится к 50 % по мере подбрасывания все большего количества монет, как будто под действием невидимых тисков. Тот же эффект можно увидеть и во время моделирования этого процесса. Доля монет, выпавших лицевой стороной в первой группе попыток, составляет от 30 до 90 %. В случае сотни подбрасываний подряд этот диапазон начинает сужаться и составляет от 40 до 60 %. А когда количество подбрасываний достигает тысячи, диапазон количества выпаданий лицевой стороной вверх составляет всего от 46,2 до 53,7 %. Что-то толкает наши числа все ближе и ближе к 50 %. Это равнодушная и сильная рука закона больших чисел. Я не стану приводить здесь точную формулировку соответствующей теоремы (хотя она удивительно красива!), но ее можно представить следующим образом: чем больше монет вы подбрасываете, тем более маловероятно, что вы получите 80 % монет, выпавших лицевой стороной вверх. В действительности, если вы подбросите достаточное количество монет, шанс, что у вас будет 51 % аверсов, становится ничтожным! Нет ничего примечательного, если в случае десяти подбрасываний наблюдается неравновесный результат, однако в случае сотни подбрасываний получение соразмерного неравновесного результата было бы настолько удивительным событием, что оно скорее всего заставит задуматься, не поработал ли кто с вашими монетами.

Понимание, что результаты эксперимента стремятся к фиксированной средней величине, когда этот эксперимент повторяется многократно, – факт далеко не новый. В действительности данное явление известно почти столь же давно, сколько существует математическое изучение самой вероятности. Этот принцип сформулировал в XVI столетии Джироламо Кардано – правда, без всяких формальностей; и только в начале XIX столетия Симеон Дени Пуассон придумал для него выразительное название – «закон больших чисел» (Loi des grands nombres).

Шлем жандарма

В начале XVIII столетия Якоб Бернулли предложил точную формулировку и математическое доказательство закона больших чисел. Теперь этот закон стал уже не наблюдением, а теоремой.

И данная теорема говорит нам, что игру Большой и Малой команды нельзя считать справедливой. Закон больших чисел всегда будет подталкивать результаты игроков Большой команды к 50 %, тогда как у игроков Малой команды будет гораздо более широкий диапазон результатов. Однако было бы глупо приходить к заключению, что Малая команда «лучше» справляется с подбрасыванием монет лицевой стороной вверх, даже когда она побеждает в каждой игре. Если найти средний показатель доли аверсов, выпавших у всех игроков Малой команды, вместо того чтобы рассматривать относительную долю результативного игрока, этот показатель также окажется близким к 50 %, как и у Большой команды. А если определить игрока с минимальным, а не максимальным количеством выпавших аверсов, Малая команда начинает выглядеть далеко не лучшим образом в плане подбрасывания монет лицевой стороной вверх: есть заметная вероятность, что один из игроков этой команды выбьет всего 20 % аверсов, тогда как ни один член Большой команды никогда не получит столь плохого результата. Определение результатов по абсолютному количеству аверсов дает Большой команде неоспоримое преимущество; с другой стороны, использование относительных показателей так же сильно склоняет игру в пользу Малой команды. Чем меньше количество монет – в статистике это количество обозначается термином «размер выборки», – тем больше разброс значений относительной доли монет, выпавших лицевой стороной вверх.

Именно этот эффект делает результаты политических опросов менее надежными, когда в них принимает участие меньшее количество избирателей. То же самое касается и рака мозга. В небольших штатах выборки имеют малый размер – они напоминают тонкий тростник, сгибающийся под ветром перемен, тогда как большие штаты можно сравнить с величественными старыми дубами, которым любой ветер нипочем. Определение абсолютного количества случаев заболеваемости раком мозга характеризуется смещением в сторону больших штатов, тогда как измерение самой высокой (или самой низкой) относительной доли ставит малые штаты во главе списка. Именно поэтому в Южной Дакоте может быть самый высокий уровень смертности от рака мозга, тогда как Северная Дакота претендует на одно из последних мест по этому показателю. Причина состоит не в том, что гора Рашмор или торговый центр Wall Drug[65] каким-то образом оказывают пагубное воздействие на мозг. Все проще: населению штатов меньшего размера по существу свойственна более высокая вариабельность.

Таков математический факт, который вам уже известен, даже если вы сами не догадываетесь об этом. Кто самый меткий снайпер в НБА[66]? Через месяц после начала сезона 2011/2012 года пять игроков получили равное значение самого высокого процента попаданий в лиге: Армон Джонсон, ДеАндре Лиггинс, Райан Рейд, Хашим Табит и Ронни Тюриаф.

Кто-кто?

Дело в том, что эти пять игроков не были лучшими бомбардирами НБА. Они вообще почти не играли. Армон Джонсон, например, играл в одном матче за Portland Trail Blazers. Он сделал один бросок, оказавшийся точным. В целом пять игроков из этого списка сделали тринадцать бросков, каждый из которых попал в корзину. Маленькие выборки более вариабельны, поэтому ведущим игроком НБА неизменно становится тот, кто совершил небольшое количество бросков и кому каждый раз сопутствовала удача. Вы ни за что не стали бы утверждать, что Армон Джонсон был более метким снайпером, чем Тайсон Чендлер, самый результативный постоянный игрок Knicks[67], который попал в цель в случае 141 из 202 бросков за тот же период[68]{43}. (Любые сомнения по этому поводу можно отбросить, взглянув на данные о результативности Джонсона на протяжении сезона 2010/2011 года, когда в ходе игры он сделал 45,5 % попаданий – причем попаданий довольно заурядных.) Именно поэтому в стандартном списке лидеров не отображаются данные о результативности таких игроков, как Армон Джонсон. Вместо этого НБА включает в рейтинги только тех, кто превысил определенный порог игрового времени; в противном случае первые места в списке занимали бы никому не известные временные игроки с их выборками малого размера.


Конец ознакомительного фрагмента Купить полную версию книги
1 ... 15 16 17 18 19 20 21 22 23 24
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: