Books-Lib.com » Читать книги » Домашняя » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Читать книгу - "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир"

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир' автора Джон Дербишир прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

714 0 08:43, 26-05-2019
Автор:Джон Дербишир Жанр:Читать книги / Домашняя Год публикации:2010 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
00

Аннотация к книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир", которую можно читать онлайн бесплатно без регистрации

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
1 ... 61 62 63 64 65 66 67 68 69 ... 121
Перейти на страницу:

z z2
−4 + 7i −33 − 56i
1 + i 2i
i −1
0,174 − 1,083i −1,143 − 0,377i

Таблица 13.1. Функция возведения в квадрат.

Читателю, возможно, нелегко в это поверить, но изучение «функций комплексной переменной» представляет собой одно из наиболее элегантных и прекрасных направлений в высшей математике. Области определения всех функций, знакомых нам из школьной математики, легко расширяются на все, или почти все, комплексные числа. Например, в таблице 13.2 приведен «моментальный снимок» показательной функции для некоторых комплексных чисел.

z ez
−1 + 2,141593i −0,198766 + 0,30956i
3,141593i −1
1 + 4,141593i −1,46869 − 2,28736i
2 + 5,141593i 3,07493 − 6,71885i
3 + 6,141593i 19,885 − 2,83447i

Таблица 13.2. Показательная функция.

Заметим, что, как и ранее, когда мы увеличивали аргументы «по сложению» — а сейчас, разумеется, дело обстоит таким же образом, поскольку к аргументу каждый раз прибавляется 1 + i, — значения функции изменяются «по умножению», в данном случае за счет умножения на 1,46869 + 2.28736i. Если бы мы взяли аргументы, отличающиеся друг от друга прибавлением каждый раз числа 1, то, конечно, получающиеся значения отличались бы умножением на e. Заметим еще, что в эту таблицу включено одно из самых прекрасных тождеств во всей математике:

eπi = −1.

Говорят — и я полагаю, что такое вполне могло быть, — Гаусс утверждал, что если истинность этого выражения не становится для вас очевидной сразу же, при первом взгляде на него, то вы никогда не станете первоклассным математиком.

Но как же вообще можно определить комплексную степень числа e, как, впрочем, и любого другого числа? С помощью ряда, вот как. Следующее выражение дает реальное определение того, что такое ez для вообще любого числа z, будь оно вещественным или комплексным (13.1):

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Чудесным (как мне представляется) образом эта бесконечная сумма сходится для любого числа z. Знаменатели растут так быстро, что рано или поздно побеждают любую степень любого числа. Равным образом чудесно, что если z — натуральное число, то бесконечная сумма оказывается в точности равной тому, что мы ожидаем от определения «степени» в обычном смысле, хотя разглядывание выражения (13.1) и не дает никаких намеков на то, почему бы такое могло случиться. Если z равно 4, то этот ряд оказывается равным в точности тому же, чему равно e×e×e×e (что, собственно, и понимается под обозначением e4).

Давайте просто подставим πi в выражение (13.1) и посмотрим, как быстро оно сходится. Если z равно πi, то z2 равно −π2; z3 равно −π3i; z4 равно π4; z5 равно π5i и т.д. Подставляя эти значения в бесконечную сумму и вычисляя возникающие степени числа π (для простоты с точностью до шести знаков после запятой), получаем сумму

eπi = 1 + 3,141592i 9,869604/231,00627i/2 + 97,409091/24 + 306,019685i/120 − ….

Если сложить первые 10 из этих членов, то получим −1,001829104 + 0,006925270i. Если сложить первые 20 чисел, то результат будет равен −0,9999999999243491 − 0,000000000528919i. Вполне определенным образом сумма сходится к −1. Вещественная часть приближается к −1, а мнимая исчезает.

Можно ли и логарифмическую функцию продолжить на комплексные числа? Да. И получится, разумеется, в точности функция, обратная к показательной. Если ez = w, то z = ln w. К сожалению, как и в случае квадратных корней, если мы не соблюдем меры предосторожности, мы тут же попадем в зыбучие пески многозначных функций. Это происходит из-за того, что в комплексном мире показательная функция иногда принимает одно и то же значение при различных аргументах. Например, куб числа −1, в соответствии с правилом знаков, есть −1; так что возведение в куб обеих частей равенства eπi = −1 дает e3πi = −1; таким образом, аргументы πi и 3πi дают одно и то же значение функции, равное −1, подобно тому как −2 и +2 дают при возведении в квадрат одно и то же значение 4. Тогда что же такое ln (−1)? Это πi? Или же 3πi?

Это πi. Чтобы не наживать лишних неприятностей, ограничим мнимую часть значений функции отрезком от −π (не включая) до π (включая). Тогда для всякого ненулевого комплексного числа имеется его логарифм, причем ln (−1) = πi. На самом деле, если использовать обозначения, введенные в главе 11.v, то ln z = ln |z| + iΦ(z), где Φ(z), разумеется, измеряется в радианах. В таблице 13.3 показан «моментальный снимок» логарифмической функции с точностью до шести знаков после запятой. Аргументы здесь изменяются «по умножению» (каждая строка получается умножением 1 + i на предыдущую строку), а значения функции — «по сложению» (всякий раз прибавляется 0,346574 + 0,785398i).

1 ... 61 62 63 64 65 66 67 68 69 ... 121
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Вера Попова Вера Попова27 октябрь 01:40 Любовь у всех своя-разная,но всегда это слово ассоциируется с радостью,нежностью и счастьем!!! Всем добра!Автору СПАСИБО за добрую историю! Любовь приходит в сентябре - Ника Крылатая
  2. Вера Попова Вера Попова10 октябрь 15:04 Захватывает,понравилось, позитивно, рекомендую!Спасибо автору за хорошую историю! Подарочек - Салма Кальк
  3. Лиза Лиза04 октябрь 09:48 Роман просто супер давайте продолжение пожалуйста прочитаю обязательно Плакала я только когда Полина искала собаку Димы барса ♥️ Пожалуйста умаляю давайте еще !)) По осколкам твоего сердца - Анна Джейн
  4. yokoo yokoo18 сентябрь 09:09 это прекрасный дарк роман!^^ очень нравится #НенавистьЛюбовь. Книга вторая - Анна Джейн
Все комметарии: