Books-Lib.com » Читать книги » Домашняя » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Читать книгу - "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир"

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир' автора Джон Дербишир прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

665 0 08:43, 26-05-2019
Автор:Джон Дербишир Жанр:Читать книги / Домашняя Год публикации:2010 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир", которую можно читать онлайн бесплатно без регистрации

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
1 ... 58 59 60 61 62 63 64 65 66 ... 121
Перейти на страницу:

Гипотеза Римана (в геометрической формулировке)

Все нетривиальные нули дзета-функции лежат на критической прямой.

• Нули появляются сопряженными парами. Другими словами, если a + bi — один из нулей, то нулем является и a − bi. Или еще по-другому, если z — один из нулей, то нулем будет и результат его комплексного сопряжения z'. Мы определили «комплексное сопряжение» и обозначения «зет-с-чертой» в главе 11.v. И еще одним способом скажем так: если имеется нуль сверху от вещественной прямой, то его зеркальное отображение снизу от вещественной прямой также будет нулем (верно, разумеется, и обратное).

• Вещественные части нулей симметричны относительно критической прямой, т.е. нуль или имеет вещественную часть, равную 1/2 (в духе Гипотезы Римана), или же представляет собой один из элементов пары с вещественными частями 1/2 + α и 1/2 − α для некоторого вещественного числа α, заключенного между 0 и 1/2, и с одинаковыми мнимыми частями. Примерами могли бы служить вещественные части 0,43 и 0,57 или же вещественные части 0,2 и 0,8. Другой способ сказать то же самое таков: если предположить, что имеется нетривиальный нуль не на критической прямой, то его зеркальный образ при отражении относительно критической прямой также должен быть нулем. Это следует из той формулы в главе 9.vi. Если одна сторона формулы равна нулю, то другая также должна равняться нулю. Не будем рассматривать целые значения буквы s (при которых другие члены в той формуле или ведут себя плохо, или обращаются в нуль); тогда эта формула сообщает, что если ζ(s) равна нулю, то ζ(1 − s) также равна нулю. Тем самым, если (1/2 + α) + it представляет собой нуль дзета-функции, то нулем является и (1/2α) − it, а значит, в соответствии с предыдущим пунктом и результат его сопряжения (1/2α) + it.

Когда Гильберт выступал со своим докладом, сверх этого было известно немного. Риман предложил еще другую формулу с волной для приближенного числа нулей с мнимой частью между нулем и неким большим числом T (см. главу 16.iv). Однако эту формулу доказали лишь в 1905 году (сделал это фон Мангольдт). Но Гипотезу Римана не забыли совсем. Она мелькает как тема для обсуждения в математической литературе 1890-х годов, например, во французском журнале задач L'lntermédiaire des Mathématiciens. Но по сути дела математики XIX века оставили задачу разбираться с великой и ужасной Гипотезой Бернхарда Римана математикам XX столетия.


IV.

XX столетие было довольно… довольно деятельным столетием. Много чего произошло во всех сферах человеческой жизни. Поэтому в ретроспективе век кажется ужасно долгим, намного дольше, чем просто полторы стандартные протяженности человеческой жизни, в общем-то и составляющие век. Но математика выступает величавой неспешной поступью, и глубокие проблемы, исследуемые современными математиками, выдают свои тайны очень медленно и неохотно. Внутри каждой конкретной математической дисциплины мир также довольно тесен, со своими героями, фольклором и устными традициями, связывающими сообщество воедино как в пространстве, так и во времени. Когда я собирал материал для этой книги, то из разговоров с ныне здравствующими математиками сделал вывод, что XX столетие не так уж далеко простерлось во времени — великие имена, связанные с его началом, находятся от нас все еще «в пределах слышимости».

Например, я пишу эти строки всего неделю спустя после разговоров с Хью Монтгомери, ключевым персонажем в достижениях (о которых будет рассказано в подходящий момент) 70-х и 80-х годов XX века. Хью закончил аспирантуру в Тринити-колледже в Кембридже в конце 1960-х. Среди сотрудников колледжа, которых он знал лично, был Джон Идензор Литлвуд (1885-1977), который в 1914 году получил один из первых значительных результатов, продвигающих вперед наше понимание Гипотезы Римана. «Он пытался убедить меня понюхать пороху с этой задачей», — рассказывает Хью, у которого до сих пор сохранились рукописные записки Литлвуда. Литлвуд теоретически мог бы встретиться и говорить о математике с другом Римана Рихардом Дедекиндом, который дожил до 1916 года, продолжая заниматься математикой практически до самого конца жизни, и который учился у Гаусса! (Мне не удалось выяснить, имела ли такая встреча место в действительности. В реальности она не очень вероятна. Дедекинд ушел на пенсию с поста профессора в Брауншвейгской политехнической школе в 1894 году, после чего, согласно Джорджу Пойа[106], «жил тихой жизнью, встречаясь лишь с очень небольшим числом людей»).

Описываемый период развития математики вызывает сильное ощущение непрерывности, из-за которого меня так и подмывает отбросить строго хронологический подход при рассказе о XX столетии. Это искушение усиливается ввиду характера достижений совершенных в течение этого столетия. История о Гипотезе Римана в XX веке состоит не из одной линии рассказа, а из нескольких нитей, иногда пересекающихся, иногда переплетающихся друг с другом. Здесь требуется маленькое предварительное объяснение; а объяснение само по себе требует предисловия — замечания о том, как математика развивалась в период с 1900 по 2000 год.


V.

Если не считать парижского доклада Гильберта, то 1900 год, конечно, представляет собой произвольную отметку во времени. Математика развивалась равномерно и непрерывно на протяжении всего современного периода. Математики не отправлялись домой с новогодних вечеринок в первые часы 1 января 1900 года (или, если вам больше нравится, 1901 — см. главу 6.ii) с мыслями: «Ага! Уже XX столетие! Нам надо переходить на более высокий уровень абстракции!» — по крайней мере, не в большей степени, чем европейцы, проснувшиеся утром 30 мая 1453 года, думали: «Средние века закончились! Надо бы заняться книгопечатанием, усомниться в авторитете Папы и отправиться открывать Новый Свет!» Мне бы очень не хотелось оказаться в ситуации, когда перед судом моих коллег мне пришлось бы обосновывать термин «математика XX века».

1 ... 58 59 60 61 62 63 64 65 66 ... 121
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: