Books-Lib.com » Читать книги » Домашняя » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Читать книгу - "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир"

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир' автора Джон Дербишир прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

665 0 08:43, 26-05-2019
Автор:Джон Дербишир Жанр:Читать книги / Домашняя Год публикации:2010 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир", которую можно читать онлайн бесплатно без регистрации

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
1 ... 44 45 46 47 48 49 50 51 52 ... 121
Перейти на страницу:

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 9.10.

V.

Ho как я получил все эти значения ζ(s) для s, меньших 1? Мы уже видели, что бесконечный ряд из выражения (9.1) для этого непригоден. А что пригодно? Если бы ради спасения своей жизни мне пришлось вычислить значение ζ(−7,5), как бы я к этому подступился?

Я не могу объяснить этого в полной мере, потому что такое объяснение требует слишком значительного погружения в математический анализ. Но я попробую передать общую идею. Сначала определим некоторую новую функцию, используя бесконечный ряд, слегка отличный от ряда в выражении (9.1). Это η-функция; η (читается «эта») — седьмая буква греческого алфавита. Определим η-функцию как

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Грубая прикидка подсказывает, что у этой функции перспективы сходимости лучше, чем у выражения (9.1). Вместо непрестанного прибавления чисел здесь мы по очереди то прибавляем, то вычитаем, так что каждое следующее число до некоторой степени сокращает вклад предыдущего. Так оно и выходит. Математики в состоянии доказать — хотя здесь мы этим заниматься не будем, — что этот новый бесконечный ряд сходится всегда, когда s больше нуля. Это существенное улучшение по сравнению с выражением (9.1), которое сходится, только когда s больше единицы.

Но какая нам от всего этого польза в отношении дзета-функции? Для начала заметим, что в силу элементарных алгебраических правил A − B + C − D + E − F + G − H + … равно (A + B + C + D + E + F + G + H + …) минус 2×(B + D + F + H + …). Поэтому функцию η(s) можно переписать как

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

минус

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Первая скобка — это, конечно, ζ(s). Вторую скобку легко упростить, пользуясь 7-м правилом действий со степенями: (ab)n = anbn. Таким же образом каждое из этих четных чисел можно разбить в произведение видаПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике, после чего можно вынестиПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике в качестве множителя перед всей скобкой. А что останется в скобке? Там останется ζ(s)! Коротко говоря,

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

или, переписав это «наоборот» и слегка причесав, получаем

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Вот. Это означает, что если нам удастся узнать какое-то значение η(s), то мы немедленно будем знать и значение ζ(s). А поскольку можно узнать значения η(s) между 0 и 1, можно получить и значение ζ(s) в этом промежутке, несмотря на то что «официальный» ряд для ζ(s) там не сходится.

Пусть, например, s равно 1/2. Если сложить 100 членов ряда для η(1/2), то получится 0,555023639…; если сложить 10 000 членов, получится 0,599898768…. В действительности значение η(1/2) составляет 0,604898643421630370…. (Существуют определенные приемы позволяющие вычислять такое без необходимости сложения мириад членов.) Вооруженные всем этим, мы можем вычислить значение ζ(1/2) оно оказывается равным −1,460354508…, что выглядит очень правдоподобно, если судить по первому графику из приведенного выше набора.

Но задержимся на мгновение. Не устроили ли мы тут игру в наперстки с двумя бесконечными рядами, один из которых сходится при аргументе s = 1/2, а другой — нет? Ну, строго говоря, мы действуем не совсем по правилам, и я обошелся довольно безответственно с той математикой, на которой здесь все основано. Однако же я получил правильный ответ, причем этот фокус можно повторить для любого числа между нулем и единицей (не включая ее) и получить правильное значение для ζ(s).


VI.

За исключением одного только s = 1, где ζ(s) не имеет значения, мы можем теперь предъявить значение дзета-функции для любого числа s, большего нуля. А как насчет аргументов равных нулю или меньших нуля? Вот здесь все по-настоящему круто. Один из результатов в работе Римана 1859 года состоит в доказательстве формулы, впервые предложенной Эйлером в 1749 году, которая выражает ζ(1 − s) через ζ(s). Таким образом, если мы желаем узнать, например, значение ζ(−15), то надо просто вычислить значение ζ(16) и подставить его в эту формулу. Это, правда, неслабая формула, и я привожу ее главным образом для полноты картин:[75]

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Всюду здесь π — это магическое число 3,14159265…, sin — добрая старая тригонометрическая функция синус (от аргумента, выраженного в радианах), а знак «!» обозначает факториальную функцию, упоминавшуюся уже в главе 8.iii. В математике, изучаемой в старших классах, вы встречались только с факториальной функцией, аргументами которой являются положительные целые числа: 2! = 1×2, 3! = 1×2×3, 4! = 1×2×3×4 и т.д. В высшей математике, однако, есть способ определить факториальную функцию для всех чисел, кроме отрицательных целых, для чего применяется прием расширения области определения вполне в духе того, которым мы только что пользовались. Например, (1/2)! оказывается равным 0,8862269254… (на самом деле — половине квадратного корня из π), (−1/4)! = 1,2254167024… и т.д. Отрицательные целые создают проблемы в этой формуле, но это не критические проблемы, и я ничего о них говорить не буду. На рисунке 9.11 изображена полная факториальная функция для аргументов от −4 до 4.

1 ... 44 45 46 47 48 49 50 51 52 ... 121
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: