Books-Lib.com » Читать книги » Домашняя » Путеводитель для влюблённых в математику - Эдвард Шейнерман

Читать книгу - "Путеводитель для влюблённых в математику - Эдвард Шейнерман"

Путеводитель для влюблённых в математику - Эдвард Шейнерман - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Путеводитель для влюблённых в математику - Эдвард Шейнерман' автора Эдвард Шейнерман прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

402 0 04:43, 26-05-2019
Автор:Эдвард Шейнерман Жанр:Читать книги / Домашняя Год публикации:2018 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0
Купить книгу

Аннотация к книге "Путеводитель для влюблённых в математику - Эдвард Шейнерман", которую можно читать онлайн бесплатно без регистрации

Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге. Автор приглашает читателя испытать свои силы в решении математических головоломок и станет вашим гидом в захватывающем и комфортном путешествии по миру чисел, геометрических фигур и теории вероятностей. Достаточно школьных знаний алгебры, а итогом станет незабываемая радость знакомства с основами математического мышления.
1 2 3 ... 11
Перейти на страницу:
Ознакомительный фрагмент

Положительное целое число называется простым, если у него есть ровно два делителя: 1 и оно само.

Например, 17 – простое число, потому что 1 и 17 – его единственные делители. По той же причине 2 – простое число.

С другой стороны, 18 не является простым числом, потому что помимо 1 и самого себя оно делится на 2, 3, 6 и 9. Такие числа, как 18, называют составными. Если говорить математическим языком, то положительное целое число называют составным, если у него есть другие делители помимо 1 и самого себя.

Размежевание чисел на простые и составные касается всех натуральных чисел, кроме 1. Мы выделяем 1 в отдельную категорию и называем единичным элементом, или единицей[15]. Кого-то расстраивает тот факт, что Плутон больше не причисляют к планетам, другие раздражены тем, что 1 не считается простым числом.

Если подытожить, у нас есть три категории положительных целых чисел:

единица с одним положительным делителем;

простое число с двумя положительными делителями;

составное число с тремя и более положительными делителями.

Отмечу, что 1 – единственное в своем роде число, а вот составных чисел бесконечно много: 4, 6, 8, 10, 12 и т. д. – составные числа (и таких еще много).

Но сколько же простых чисел существует?

Разложение на множители

Разложить число на множители означает представить его в виде произведения. Рассмотрим число 84. Мы можем разложить его на множители несколькими способами, например:

2 × 42; 3 × 28; 12 × 7; 2 × 6 × 7; 21 × 4.

В пределе разложить на множители означает найти произведение простых чисел, например: 84 = 2 × 2 × 3 × 7. Нельзя разбить эти множители на части, потому что каждый из них представляет собой простое число. Разумеется, мы можем добавить какое-то количество единиц, например:

84 = 1 × 1 × 2 × 2 × 3 × 7,

но дополнительные множители усложняют, а не упрощают выражение, другие множители от этого не становятся меньше[16].

Возьмем другой пример: 120. Мы можем представить 120 как 12 × 10 и затем 12 как 2 × 2 × 3, а 10 – как 2 × 5. Это дает:

120 = (2 × 2 × 3) × (2 × 5). (A)

С другой стороны, мы можем начать так: 120 = 4 × 30 и далее заметить, что 4 = 2 × 2, а 30 = 2 × 3 × 5. Вместе это дает:

120 = (2 × 2) × (2 × 3 × 5). (B)

Важно отметить, что простые числа в выражениях (A) и (B) одинаковые, различается лишь порядок, в котором они перемножаются. Это показано на рисунке.

Любой способ представления числа 120 в качестве произведения простых чисел дает один и тот же результат.


Путеводитель для влюблённых в математику

Эта единственность разложения на множители зафиксирована в следующей теореме[17].

Теорема (основная теорема арифметики). Любое положительное целое (натуральное) число может быть разложено на простые множители единственным образом (если пренебречь порядком множителей)[18].

(Здесь необходимо небольшое пояснение. В случае, скажем, числа 30 это утверждение достаточно ясно. Мы можем представить 30 как 2 × 3 × 5 или как 5 × 3 × 2 – разницы нет, отличается лишь порядок множителей. Простое число имеет всего один простой множитель – само себя. Например, множитель 13 – это 13. Но как быть с 1? Принято говорить, что пустое произведение[19] равно единичному элементу; таким образом, произведение отсутствующих элементов равно 1.)

Сочетая простые числа, мы выстраиваем все положительные целые числа. Простые числа – это атомы умножения.

Насколько много?

Вернемся к вопросу: сколько всего простых чисел существует? Ответ – на следующей строчке.

Теорема. Простых чисел бесконечно много.

Утверждение приписывают Евклиду[20]. Доказательство этой теоремы – математическая жемчужина. Мы не можем доказать ее методом перебора. Очевидно, что время от времени в числовом ряде попадаются простые числа. Вот несколько первых простых чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 и 67.

Но чем дальше мы идем по последовательности простых чисел, тем обширнее становятся промежутки между ними. Если посмотреть на перечень выше, можно увидеть, что два числа отстоят друг от друга максимум на 6 единиц (например, 53 и 59). Но простые числа 89 и 97 отстоят друг от друга на 8 единиц, все целые числа между ними составные. Или вот другой пример: 139 и 149 – их отделяет 10 единиц. Чем дальше мы двигаемся, тем быстрее увеличиваются промежутки между соседними простыми числами. Можно предположить, что в конечном итоге простые числа должны совсем исчезнуть. На самом деле, хотя они и встречаются все реже, их список в числовом ряду не имеет конца. Впрочем, прежде чем говорить об этом уверенно, мы должны привести доказательство.

1 2 3 ... 11
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: