Books-Lib.com » Читать книги » Домашняя » Как не ошибаться. Сила математического мышления - Джордан Элленберг

Читать книгу - "Как не ошибаться. Сила математического мышления - Джордан Элленберг"

Как не ошибаться. Сила математического мышления - Джордан Элленберг - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Как не ошибаться. Сила математического мышления - Джордан Элленберг' автора Джордан Элленберг прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

1 063 0 16:09, 25-05-2019
Автор:Джордан Элленберг Жанр:Читать книги / Домашняя Год публикации:2017 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0
Купить книгу

Аннотация к книге "Как не ошибаться. Сила математического мышления - Джордан Элленберг", которую можно читать онлайн бесплатно без регистрации

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее. Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится. На русском языке публикуется впервые.
1 ... 15 16 17 18 19 20 21 22 23 24
Перейти на страницу:
Ознакомительный фрагмент

Однако статья в журнале Obesity скрывает еще худшее преступление против математики и здравого смысла. Сделать линейную регрессию довольно легко – и как только вы выполнили ее один раз, возникает соблазн делать это и дальше. Поэтому Ванг и его коллеги разбили свои данные на категории по этнической и половой принадлежности. Например, оказалось, что чернокожие мужчины с меньшей вероятностью имеют избыточный вес, чем американцы в целом. Еще важнее, что среди чернокожих мужчин количество людей с избыточным весом увеличивалось в два раза медленнее. Если мы отобразим на одном рисунке графики увеличения доли людей с избыточным весом среди чернокожих мужчин и среди всех американцев, а также линейную регрессию, построенную Вангом и его коллегами, получится следующая картина.


Как не ошибаться. Сила математического мышления

Молодцы, чернокожие! Вы не будете жирными вплоть до 2095 года, а в 2048 году ожирение распространится лишь у 80 %.

Видите, в чем проблема? Если предполагается, что в 2048 году все американцы будут иметь избыточный вес, где же будут те чернокожие мужчины, у которых не возникнет в будущем никаких проблем с весом? За пределами страны?

В статье это противоречие осталось без внимания. А ведь это эпидемиологический эквивалент утверждения о −4 граммах воды в кувшине. Ноль зачетных баллов.

Глава четвертая
Сколько это в мертвых американцах?

Насколько серьезен конфликт на Ближнем Востоке? Эксперт по вопросам борьбы с терроризмом Дэниел Баймен из Джорджтаунского университета приводит в Foreign Affairs холодные, безжалостные цифры: «Израильские военные сообщают о том, что с начала второй интифады [2000 год. – Д. Э.] до конца октября 2005 года палестинцы убили 1074 и ранили 7520 израильтян – для такой маленькой страны поразительные данные, пропорциональный эквивалент которых составляет 50 тысяч убитых и 300 тысяч раненых американцев»{33}. Такие подсчеты часто используются во время обсуждения ситуации в ближневосточном регионе. В декабре 2001 года Палата представителей Конгресса США заявила о том, что гибель 26 человек во время серии атак в Израиле «пропорционально смерти 1200 американцев»{34}. Ньют Гингрич писал в 2006 году{35}: «Помните о том, что, когда Израиль теряет восемь человек, с учетом разницы в численности населения это эквивалентно потере почти 500 американцев»{36}. Не желая уступать авторам этих высказываний, Ахмед Мур написал в Los Angeles Times следующее: «Когда во время операции “Литой свинец” в секторе Газа Израиль убил 1400 палестинцев – что пропорционально 300 тысячам американцев, – будущий президент Обама хранил молчание»{37}.

Риторика с использованием пропорций не является исключительным правом, закрепленным лишь за Святой землей. Джеральд Каплан писал в 1988 году: «За последние восемь лет погибли, ранены или похищены с обеих сторон противостояния около 45 тысяч никарагуанцев – это эквивалентно 300 тысячам канадцев или 3 миллионам американцев»{38}. Министр обороны США в период Вьетнамской войны Роберт Макнамара сказал в 1997 году, что почти 4 миллиона погибших во время войны вьетнамцев «эквивалентны 27 миллионам американцев»{39}. Каждый раз, когда в какой-либо небольшой стране погибает много людей, авторы редакционных статей достают свои логарифмические линейки и начинают подсчитывать: сколько этих погибших «укладывается» в мертвых американцах?

Вот как можно получить эти цифры. Погибшие от рук террористов 1074 израильтян составляют 0,015 % от общей численности населения Израиля (которая в период с 2000 по 2005 год составляла от 6 до 7 миллионов). Далее все эти эксперты приходят к выводу, что смерть 0,015 % американского населения (что составляет около 50 тысяч человек) имела бы в данном случае такой же эффект.

Это линеоцентризм в чистейшей форме. Согласно аргументации с использованием пропорций, эквивалент 1074 израильтян в любой точке земного шара можно найти с помощью такого графика.


Как не ошибаться. Сила математического мышления

Количество израильских жертв – 1074 человек – эквивалентно 7700 испанцев или 223 тысяч китайцев, но всего 300 словенцев и одному или двум тувалуанцам.

Со временем (а может быть, и с самого начала?) такая аргументация начинает рушиться. Когда в момент закрытия в баре остается два человека и один из них сбивает с ног другого, это совсем не эквивалентно тому, что в это же время удар получают 150 миллионов американцев.

Еще один пример. Все согласны с тем, что одно из самых страшных преступлений столетия – когда в 1994 году было уничтожено 11 % населения Руанды. Но мы не рассуждаем об этом кровопролитии так: «С точки зрения Европы сороковых это было в девять раз хуже холокоста». Малейшая попытка сделать это вызвала бы настоящее отвращение.

Вот одно из важнейших правил математической гигиены: когда вы проверяете на практике тот или иной математический метод, попробуйте выполнить одни и те же расчеты несколькими разными способами. Если получите в результате разные ответы, значит, с вашим методом что-то не так.

Возьмем такой пример. На железнодорожном вокзале Аточа в результате взрыва бомбы в 2004 году погибло 200 человек[63]. Каким был бы эквивалентный итог взрыва бомбы на Центральном железнодорожном вокзале в Нью-Йорке?

Численность населения Соединенных Штатов Америки в семь раз превышает численность населения Испании. Следовательно, если представить 200 человек как 0,0004 % от населения Испании, эквивалентный террористический акт в США привел бы к гибели 1300 человек. С другой стороны, 200 человек составляют 0,006 % от населения Мадрида; пропорциональное увеличение этого количества с учетом численности населения Нью-Йорка, которая в два с половиной раза больше населения Мадрида, дает 463 жертвы. Или нам следует сопоставить провинцию Мадрид со штатом Нью-Йорк? В таком случае мы получили бы цифру около 600 жертв. Такую неоднозначность результатов необходимо расценивать как тревожный сигнал: метод пропорций не внушает доверия.

1 ... 15 16 17 18 19 20 21 22 23 24
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: