Books-Lib.com » Читать книги » Психология » Больцман. Термодинамика и энтропия - Эдуардо Арройо

Читать книгу - "Больцман. Термодинамика и энтропия - Эдуардо Арройо"

Больцман. Термодинамика и энтропия - Эдуардо Арройо - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Психология книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Больцман. Термодинамика и энтропия - Эдуардо Арройо' автора Эдуардо Арройо прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

301 0 11:29, 26-05-2019
Автор:Эдуардо Арройо Жанр:Читать книги / Психология Год публикации:2016 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Больцман. Термодинамика и энтропия - Эдуардо Арройо", которую можно читать онлайн бесплатно без регистрации

Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.
1 ... 15 16 17 18 19 20 21 22 23 ... 36
Перейти на страницу:

Номер конфигурации Энергия каждой молекулы В
1. 0000007 7
2. 0000016 42
3. 0000025 42
4. 0000034 42
5. 0000115 105
6. 0000123 210
7. 0000133 105
8. 0000223 105
9. 0001114 140
10. 0001123 420

ВЕРОЯТНОСТЬ И ПЕРЕСТАНОВКИ

Вычисление вероятностей в теории Больцмана, по крайней мере для небольшого числа сочетаний, можно понять с помощью элементарной математики. Оно основано на так называемой "факториальной функции", которая обозначается восклицательным знаком и определяется так:

n! = n · (n - 1) · (n - 2) · (n - 3) · (...) · 1,

где л — любое число. То есть 3! равно 3 · 2 · 1 = 6, а 5! равно 5 · 4 · 3 · 2 х х 1 = 120. Предположим, у нас есть множество из л цветных шаров. Мы хотим узнать число возможных уникальных сочетаний. Начнем с небольшого числа шаров, а затем усложним ситуацию, добавив еще. При трех шарах красного (К), синего (С) и черного (Ч) цветов различные возможные сочетания, полученные методом проб и ошибок, следующие:

КСЧ, КЧС, СКЧ, СЧК, ЧКС, ЧСК.

Эти шесть сочетаний можно получить более элегантным способом. Если рассматривать первое положение, можно выбирать из трех шаров, во втором положении остается два варианта, а в третьем — один. Количество вариантов равно 3-21 = 6. Для случая с n разноцветных шаров этот метод легко расширить. Для первого положения у нас л вариантов, для второго остается (n - 1) и так далее. Конечное выражение следующее:

n · (n - 1) · (n - 2) · (n - 3) · (...) · 1 = n!,

то есть ранее определенная факториальная функция. Однако это выражение несправедливо, если разные шары обладают одним и тем же цветом. В этом случае многие сочетания окажутся равнозначными, поскольку не будет способа различить одинаковые шары. Для этого нужно разделить все возможные сочетания между шарами одного и того же цвета; то есть сначала берутся все возможные сочетания, если бы шары были различимы, а затем исключаются те, к которым это предположение неприменимо. Если существует nА шаров цвета 1, n2 цвета 2 и так далее до цвета р, то общее число сочетаний окажется:

р = n!/(n1! · n2! · n3!...nр!).

Это та же самая формула, которая используется для множества молекул, где число частиц равно n, а различные возможные состояния энергии идут от 1 до р. Применяемое рассуждение точно такое же, и именно им воспользовался Больцман в своей статье 1877 года для вычисления числа комплексий, совместимых с некоторым распределением.


11. 0001222 140
12. 0011113 105
13. 0011122 210
14. 0111112 42
15. 1111111 1

Вероятность каждого состояния можно вычислить, разделив число совместимых с ним комплексий на общее число комплексий. Этот относительно простой расчет давал представление о том, что Больцман осуществил позже, хотя и в намного более сложном с математической точки зрения виде. Далее он получил общее выражение для числа перестановок распределения, на этот раз предположив, что число молекул, во-первых, очень велико, а во-вторых, что энергия принимает непрерывные значения. Наконец, он ввел выражение "степень перестанавливаемости", которое определил как логарифм числа перестановок.

Произведя расчеты, Больцман выяснил, что выражение степени перестанавливаемости равно величине H из его предыдущей статьи с измененным знаком; это было важно, поскольку величина Я равна энтропии со знаком минус. Итак, степень перестанавливаемости могла быть использована как мера энтропии системы. Больцман, должно быть, осознавал важность своего результата, поскольку в заключение подчеркивал:


"Хорошо известно, что когда система тел подвергается чисто обратимой трансформации, общая энтропия остается постоянной. Если, наоборот, среди трансформаций, которым подвергается система, есть хоть одна необратимая, энтропия может только увеличиваться [...]. Что касается предыдущего отношения, то же самое справедливо для [...] меры перестанавливаемости для множества тел. Эта мера перестанавливаемости, следовательно, является величиной, которая, находясь в состоянии термодинамического равновесия, совпадает с энтропией [...], но она также имеет значение в необратимых процессах, где она постоянно увеличивается".


ДЖОЗАЙЯ УИЛЛАРД ГИББС

Американский физик Джозайя Уиллард Гиббс внес значительный вклад как в химию, так и в физику и ввел термин "статистическая физика". Это был скромный гений со склонностью к отшельничеству: ббльшую часть жизни он прожил в доме своей сестры и, унаследовав немалое состояние своего отца, на добровольных началах преподавал в Йельском университете. Гиббс провел небольшой период времени в Европе, не упустив возможность посетить лекции Кирхгофа и Гельмгольца среди прочих. Позже, несмотря на то что он почти не выезжал из своего родного города, он вел переписку с другими физиками, особенно с Максвеллом, который был в восторге от его работы. Эйнштейн даже говорил, что Гиббс — "самый блестящий ум в истории Америки".

1 ... 15 16 17 18 19 20 21 22 23 ... 36
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: