Читать книгу - "Путь джедая - Максим Дорофеев"
Аннотация к книге "Путь джедая - Максим Дорофеев", которую можно читать онлайн бесплатно без регистрации
Рис. 28. Благоприятная возможность и мерзкая неприятность реагируют по-разному
4.2. О том, насколько в реальности полезны научные исследования
Сейчас в интернете есть множество статей со словами «ученые доказали, что…» К сожалению, ученые редко что-либо доказывают. Особенно в социологии, психологии и прочих областях, где объектом исследования являются люди в различных сочетаниях, количествах и проявлениях. Если вы посмотрите на то, что пишут ученые в своих статьях (благодаря scholar.google.com у нас есть доступ к огромному массиву научных исследований из различных областей без необходимости визита в научную библиотеку), вы никогда не увидите что-то вроде: «Мы провели эксперимент и доказали, что кофе полезен» или «Мы долго работали и поняли, что спать нужно восемь часов». Если бы ученые исследовали влияние кофеина на организм человека, то, скорее всего, их вывод звучал бы примерно так: «Мы исследовали столько-то человек, давали им столько-то раз такое-то количество кофе, через столько-то времени мы измеряли такой-то параметр и по сравнению с контрольной группой заметили такое-то изменение этого параметра с таким-то значением доверительного интервала».
Или вот так: «Мы исследовали связь количества потребленного кофеина с ощущением бодрости после обеда, измеряя потребленный кофеин в литрах, а бодрость — при помощи опросов по шкале имени какого-то великого ученого, и увидели связь между этими параметрами — коэффициент корреляции Спирмена ноль целых сколько-то десятых при уровне значимости одна десятитысячная». И тут даже специалист не поймет, что это означает для отдельно взятого человека в обычной жизни. Ученые этим что-то доказали или все еще сомневаются? А если какая-то связь есть, что является причиной, а что следствием? Мало того, потом в этой же статье обязательно напишут: «Мы исследовали бодрость после обеда, но не уверены, что она влияет на бодрость перед ужином. В эксперименте мы использовали молотый кофе и не уверены в том, что аналогичные результаты могут быть получены на растворимом, — это направление нашей дальнейшей работы. А вообще мы благодарим кофейню за углом за поддержку наших исследований и еще сообщаем, что никакого конфликта интересов у нас нет».
Подавляющая часть научных работ в экспериментальной психологии и социологии — это исследование связей или корреляций. И очень часто не отягощенные интеллектом контент-мейкеры[30], прочитав только аннотацию статьи (а зачастую лишь название), подменяют корреляцию причинно-следственной связью и бегут писать очередную статью с громким заголовком[31]. Очень хорошую иллюстрацию тонкостей выводов на основе данных корреляционного анализа я нашел в учебнике по матстатистике для психологов Андрея Наследова[32]: исследователь решил сопоставить размер стопы ребенка со скоростью решения арифметических задач и, к своему удивлению, обнаружил очень сильную статистически значимую корреляцию. И пойди пойми, то ли при росте стопы улучшаются способности к математике, то ли наоборот — при накоплении знаний в области математики растет стопа. А может, это просто с возрастом у детей растут и стопы, и математические навыки.
То, что корреляция не говорит о наличии причинно-следственной связи, авторы научных статей знают (это могут забывать те, кто по мотивам аннотации пишут затем статью в популярный блог), но есть еще один момент, который не дает нам прямо воспользоваться результатами исследований, — эргодичность. Точнее, ее отсутствие. Этим словом называют свойство системы, при котором я могу использовать знание, полученное при наблюдении большого количества объектов в один момент времени, для определения результатов большого количества наблюдений, но уже одного объекта. Например, я могу подбросить 100 монеток один раз и результат будет таким же, как если бы я подбросил 100 раз одну монетку. А вот любимый пример Талеба — игра в русскую рулетку — свойством эргодичности не отличается. Если 1000 человек сыграют один раунд в русскую рулетку, то в среднем 870 из них выживут, но если один человек сыграет в эту игру 1000 раз…

Рис. 29. Эргодичность
Примерно то же происходит и с научными изысканиями. Ученые часто исследуют большие выборки людей непродолжительное время, но полученные таким образом результаты далеко не всегда можно транслировать на себя самого (один человек и продолжительное время). Другими словами, если я напою 100 человек кофе и измерю прирост их продуктивности, я получу, скорее всего, не такой результат, как если бы я сам пил кофе 100 дней и усреднял свой прирост производительности. Именно поэтому научные работы могут быть полезными для учителя (имеющего дело со множеством людей), но они не настолько полезны для ученика (желающего изучить и улучшить одного себя).
Из-за отсутствия эргодичности и из-за того, что мы очень сильно отличаемся друг от друга, бывает опасно обобщать свой успешный опыт многих месяцев жизни или опыт каких-то известных личностей на других людей (подробнее об этом еще будет в разделе 4.7). У Андрея Ломачинского есть довольно «чернушная» история, очень хорошо иллюстрирующая последствия неаккуратного переноса своего опыта на других людей. Называется «Метанол на опохмел»[33]. Но предупреждаю: книга в общем и этот рассказ в частности — не для впечатлительных!
Например, рассмотрим некоторое гипотетическое исследование некой гипотетической методики для повышения личной эффективности. Предположим, что кто-то провел исследования и утверждает, что эта методика дает прирост производительности «в среднем на 16%». Тут стоит заметить, что «на данный момент не существует универсально принятого метода измерения производительности работников умственного труда или даже общего понимания его категорий» (это дословная цитата из исследования Нембарда и Рамиреса, где описаны два с лишним десятка различных подходов к измерению умственного труда с анализом ограниченной области применимости каждого из них[34]). Тем не менее на минуту предположим, что авторы этого исследования смогли операционализировать и сделать измеримым это понятие хотя бы в каком-то приближении, пригодном для их собственных целей. Главное не в этом, а в том, что, скорее всего, это среднее было получено путем усреднения по группе испытуемых и, соответственно, ничего не говорит о том, как менялась производительность отдельно взятых людей с течением времени. Еще один момент, который упускается в научно-популярных публикациях, — указание среднего без указания дисперсии. Мой любимый пример (наверняка редактор вырежет): «У среднего человека одно яйцо и одна сиська». Яркий пример, когда дисперсия результата сравнима со средним значением.
Конец ознакомительного фрагмента Купить полную версию книги
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев