Books-Lib.com » Читать книги » Разная литература » Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов

Читать книгу - "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов"

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Разная литература книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов' автора Алексей Михайлович Семихатов прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

340 0 14:52, 30-10-2022
Автор:Алексей Михайлович Семихатов Жанр:Читать книги / Разная литература Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов", которую можно читать онлайн бесплатно без регистрации

Рассказ о фундаментальной научной картине мира в развитии от более наглядного к более абстрактному: от брошенного камня до объяснения уравнений Эйнштейна и Шрёдингера. Человек разбирается в устройстве Вселенной, наблюдая за движением и его последствиями, догадываясь о правилах, которые регулируют все, что происходит, и получая подсказки о скрытых частях мира или о новых правилах из несоответствий между теоретически ожидаемым и реальным движением: знаменитые примеры включают предсказанное существование Нептуна, Планеты 9 и невидимого вещества в галактиках, причины ускоренного расширения Вселенной, квантовую природу теплового излучения. Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель». В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие. Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.

1 ... 72 73 74 75 76 77 78 79 80 ... 202
Перейти на страницу:
на вопросы об устройстве их искривленного пространства-времени.

Для «определения параллельности» внутренними средствами, как выясняется, недостаточно самих по себе двух точек, в которых мы желаем определить параллельные направления: нужно еще выбрать какую-то линию, их соединяющую, как показано на рис. 6.10. Математическое знание под названием параллельный перенос тогда сообщает, что значит перенести стрелку из одной точки в другую вдоль выбранной линии. Правда, результат параллельного переноса зависит от этой линии! В плоском пространстве мы привыкли к более простой ситуации: если две стрелки, прикрепленные к разным точкам, параллельны, то они «просто» параллельны, вне зависимости от каких бы то ни было кривых, соединяющих выбранные точки. Но тут уж ничего не поделаешь, в искривленных геометриях нельзя избежать зависимости от кривой, вдоль которой происходит параллельный перенос. (А если этой зависимости совсем нет, то это-то и означает, что геометрия оказалась плоской; подробности впереди.) И в нашем случае математическое определение параллельного переноса должно быть согласовано с тем, что лежит в основе всего построения искривленного пространства-времени: со свободным падением. Поэтому мы все-таки обращаемся к локальным наблюдателям с заданием превратить их наблюдения за свободным падением в знание о том, каким образом стрелки/направления следует параллельно переносить вдоль кривых. Мы покупаем у них это знание в виде пакета услуг, а после этого о локальных наблюдателях наконец забываем.

Рис. 6.10. Параллельный перенос вектора, заданного в точке A, вдоль кривой. Кривая проведена на двумерной искривленной поверхности. Задача параллельного переноса – в любой точке кривой указать векторы, которые считаются параллельными исходно выбранному вектору

Толпе локальных наблюдателей, оказывается, по силам определить процедуру параллельного переноса вдоль кривой в пространстве-времени, используя конструкцию, которая называется лестницей Шильда[105]. Это система «параллелограммов», точнее, того, что заменяет параллелограммы в мире, где вместо прямых линий – геодезические. Для простоты мы ограничимся такими кривыми в пространстве-времени, которые в принципе могут описывать движение какого-нибудь тела – под действием чего угодно, но все-таки с досветовыми скоростями. На рис. 6.11 слева изображена такая кривая, а из точки A0 на ней торчит стрелка: она определяет направление, которое и нужно перенести вдоль кривой. Идея в том, чтобы построить «параллелограмм», одна сторона которого – заданная стрелка, а другая – направление на некоторую «следующую» точку на кривой; тогда сторона, противоположная заданной стрелке, и окажется ее параллельным переносом в ту другую точку. Строить «параллелограмм» предлагается по двум диагоналям, пользуясь тем, что (как и в настоящем параллелограмме) точка их пересечения делит каждую из них пополам. Ключевое же обстоятельство состоит в том, что линии, используемые во всех построениях, включая и диагонали, – отрезки геодезических! Это означает, что локальные наблюдатели проводят их, отправляя тела в свободное падение[106]. Получающееся отсюда правило параллельного переноса в результате «знает» о том, как происходит свободное падение. Поэтому и искривленное пространство-время, по существу определяемое параллельным переносом, оказывается пригодным для описания гравитации, служащей причиной этого вида движения, – чего мы, собственно говоря, от искривленного пространства-времени и хотели.

Рис. 6.11. Построение лестницы Шильда для параллельного переноса какого-то направления вдоль произвольной кривой. Наблюдатели создают «параллелограммы» из отрезков геодезических

Построение «параллелограммов» из коротких отрезков геодезических называется лестницей Шильда, потому что процедура, приводящая к параллелограмму на рис. 6.11 справа, повторяется, и вдоль кривой появляются новые параллелограммы, составленные из отрезков геодезических. Если лестницу Шильда строить в плоском пространстве-времени, то она вся состоит из настоящих параллелограммов, поэтому перенос получается параллельным в привычном нам смысле. Используя же вместо прямых отрезки геодезических, мы получаем обобщение на случай, когда настоящих прямых нет, а с параллельностью заранее ничего не ясно.

Рис. 6.12. Левая стрелка – касательный вектор к кривой. Если его перенести параллельно в какую-то другую точку кривой, то даже в плоском пространстве (где параллельный перенос происходит по правилу параллелограмма) он перестает быть касательным к кривой

Мы покупаем услугу «безлимитный параллельный перенос любой стрелки вдоль любой кривой» в готовом виде и больше не вникаем в хлопоты локальных наблюдателей по построению лестниц Шильда. Параллельный перенос как система правил, определяющих, как переносится любая стрелка вдоль любой кривой, – это главное математическое средство, позволяющее разбираться с тем, что происходит в искривленных геометриях. Наши траты быстро окупаются – уже одним тем, что у нас появляется способ проводить «длинные» геодезические (далеко за пределы одной карты). Дело в том, что параллельный перенос позволяет выразить все то, чего мы хотим от геодезических – чтобы они были «самыми прямыми из возможных», – в виде уравнений. Изящная идея основана на совсем простом наблюдении. Параллельному переносу вдоль кривой можно подвергнуть вектор, касательный к кривой в выбранной точке, как показано на рис. 6.12; при этом, однако, нет никаких причин, по которым перенесенный вектор оказался бы тоже касательным: произвольная кривая «поворачивает куда захочет», никак не сообразуясь с правилами параллельного переноса. В плоском пространстве, правда, есть одно исключение: если сама выбранная кривая является прямой линией, то касательный вектор остается касательным при параллельном переносе. Звучит это настолько банально, что вроде бы и внимания не заслуживает, ведь касательный вектор к прямой направлен вдоль самой этой прямой и уж, конечно, остается касательным, когда его переносят параллельно. Пусть банально; но в таком виде это свойство обобщается на все случаи, где имеется параллельный перенос!

Геодезические становятся решениями уравнений!

Геодезические – «самые прямые» при заданном параллельном переносе

Геодезические – это в точности такие кривые, что касательный вектор к каждой из них остается касательным, когда его параллельно переносят вдоль кривой. Именно в этом смысле геодезические – «самые прямые из возможных»: они «менее всего поворачивают», но измеряется это «менее всего» с помощью правил параллельного переноса. Это свойство и выражается в виде уравнения: решить его – значит найти кривую, касательный вектор к которой остается касательным при параллельном переносе вдоль нее. Записать уравнение для геодезических несложно, если мы заранее озаботились приобретением параллельного переноса – тоже, конечно, на языке формул[107].

И вот награда за все пережитое: фраза «пространство-время говорит материи, как ей двигаться» теперь

1 ... 72 73 74 75 76 77 78 79 80 ... 202
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: