Читать книгу - "Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов"
Аннотация к книге "Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов", которую можно читать онлайн бесплатно без регистрации
Квантовая механика – самый точный из известных человечеству способов описания мира на той фундаментальной глубине, которая определяет его структуру, но недоступна прямому наблюдению. Только благодаря квантовой природе удается существовать атомам, людям, звездам и почти всему остальному. Квантовые эффекты, которые уже задействованы в технологиях, максимально приближаются к нашим представлениям о чудесах. Но в силу самого своего устройства квантовая механика оставляет недосказанности в отношении поведения квантовых объектов и свойств реальности.На заре второго квантового столетия Алексей Семихатов, автор бестселлера «Всё, что движется», предлагает последовательное изложение современного состояния квантовой механики. Каковы принципиальные особенности квантового мира и какой ценой их можно примирить с интуицией? По каким правилам развиваются квантовые системы во времени и как в это развитие вмешиваются вероятности? Как различные интерпретации квантовой механики подталкивают нас к глубоко философским заключениям о возможном устройстве реальности – от параллельных вселенных до разрывов в восприятии? И как привычная нам реальность возникает из чуждой ей квантовой? Что все-таки делает квантовый компьютер, что и как вовлекается в квантовую запутанность и почему квантовым объектам приходится существовать без некоторых свойств? Оказывается, о квантовой механике можно всерьез говорить понятным языком, а обсуждение ее сложных мест делает этот разговор только интереснее.Согласно квантовым законам и только лишь благодаря квантовым законам существуют атомы, из которых состоим и мы сами, и почти все на планете Земля; благодаря квантовым законам горит Солнце; квантовые процессы определяют взаимодействие света и вещества; весь наш мир собран из квантовых объектов. Но фундаментальная квантовая природа в глубине мира остается в основном незаметной из-за мельтешения огромного числа мельчайших участников. По отдельности они ведут себя квантово и взаимодействуют друг с другом тоже по квантовым правилам, но все вместе образуют привычный нам наблюдаемый, и почти ничем не квантовый, мир…. Парадоксальным образом привычные свойства окружающего мира основаны на чуждых ему квантовых явлениях.Особенности26 иллюстраций, нарисованных специально для книги. Иллюстратор Нюся Красовицкая предложила философско-метафорическое видение предмета, определяющая черта которого – отсутствие наглядности.Квантовая механика не похожа на другие физические теории. Она поразительно успешна на практике, а ее логическая структура приводит к интригующим проблемам философского порядка. Ее вычислительная схема основана на строгих формальных предписаниях, но знаменательным образом обходит стороной вопрос о том, что же физически происходит в пространстве-времени. И в соответствии со своей собственной логикой квантовая механика ставит перед нами вопросы об устройстве реальности, но не затрудняет себя однозначными ответами.Для когоДля тех, кому интересно, какие правила игры, радикально отличающиеся от привычных, лежат в самой основе мира и определяют устройство и нас самих, и почти всего, что нас окружает.Мир выглядел бы совершенно безумным, если бы в нашем восприятии отражалась даже малая часть экзотически запутанных состояний, которые в огромном количестве возникают в ходе эволюции волновой функции под управлением уравнения Шрёдингера. Общим местом была бы неопределенность положения и ориентации в пространстве; объекты находились бы в самых немыслимых комбинациях запутанных свойств.
В природе, надо сказать, имеется число – и не просто число, а мировая постоянная ħ, называемая постоянной Планка, которая в немалой степени ответственна за масштаб квантовых явлений, включая характерную высоту энергетических ступенек (речь идет не о различных конкретных значениях, а именно об общем для них масштабе). Постоянная Планка – это фундаментальная константа, т. е. фиксированная величина, повсеместно встроенная в структуру нашей Вселенной. Она представляет собой не «голое» число, такое как 42 или 0,05, а число, снабженное размерностью; это значит, что сама по себе она может измерять только определенные физические величины – те, которые имеют ту же размерность. (Например, если в вашем распоряжении имеется единица измерения длины, и только она, то никак не получится использовать ее для измерения, скажем, массы.) Постоянная Планка «измеряет» не энергию и не какую-либо из величин, для которых имеется более-менее очевидный измерительный прибор. Ее размерность – это масса, умноженная на скорость, умноженная еще и на расстояние. Если в качестве соответствующих единиц взять килограммы, метры в секунду и метры, то значение постоянной Планка составляет ħ = 1,054571817… × 10–34 кг · (м/с) · м. По-другому, присутствующую здесь комбинацию единиц массы, скорости и расстояния можно представить как произведение (единиц) энергии и времени. Физическая величина с такой размерностью выражает, какая энергия «присутствует» в течение определенного времени; она называется действием, поэтому постоянную Планка называют иногда квантом действия. Довольно приблизительное, но оправдывающее себя на практике правило состоит в том, что если в интересующем вас процессе действие («присутствие» энергии во времени) сильно больше постоянной Планка, то квантовые эффекты почти или совсем не заметны.
Есть и другой знаменательный взгляд на постоянную Планка: размерностью кг · (м/с) · м обладает физическая величина, связанная с вращением и называемая моментом количества движения, или моментом импульса. Выражает она, если говорить неформально, «степень раскрутки» – насколько трудно остановить вращение (в обычном, неквантовом мире она представляет собой произведение массы вращающегося тела на его скорость и на расстояние до оси вращения). Вот эта величина оказывается в квантовом мире всегда «порционной», и размер ее «порций» пропорционален постоянной Планка. А поскольку это еще и сохраняющаяся величина, убыль ее в одной системе означает такое же увеличение в другой, и передается она тоже только порциями. Конечно, когда мы имеем дело с любым макроскопическим телом (типа грузика, вращающегося на нитке), кажется, что ее можно изменять непрерывно, потому что размер таких порций совершенно ничтожен в сравнении с самой величиной (похожим образом ступенчатая регулировка кажется непрерывной, если шаг ее очень мал). Про «степень раскрутки» можно при желании думать, что это самая квантовая величина – она всегда квантована. Она не раз еще встретится нам в последующих главах.
Возвращаясь к энергии: про нее, повторюсь, нельзя сказать, что она всегда и везде меняется ступеньками и передается порциями. Не всегда – но в очень многих случаях, и все такие случаи имеют ключевое значение для нашего существования. Этих порций в обычной жизни мы тоже не замечаем, потому что в большинстве процессов, которые нас окружают, их такое огромное количество, что они сливаются в нечто непрерывное. Песок, отгружаемый из карьера, тоже выглядит как непрерывная среда. Другое дело, когда песка совсем мало, как в песочных часах: тогда становится важно, что он состоит из песчинок. При большом желании их можно даже пересчитать.
Песчинки, конечно, только метафора. Порции энергии связаны с различными носителями, которые не следует представлять себе в виде сверхмалых песчинок. Они совсем другие – во многом из-за того, что существуют в условиях вечной и неизбывной вражды. Вражда, лежащая в основании нашего мира, и объясняет появление энергетической дискретности.
3
Что враждует
Невидимые глазу электроны в невидимых атомах скрывают дискретность: они могут существовать там, только если обзавелись разрешенными значениями энергии «из списка». У невидимой части этой истории есть и очень даже видимые проявления: атомы поглощают и излучают свет вполне определенных длин волн. Сами по себе эти длины волн – ничем не примечательные числа (измеряемые сотнями нанометров с некоторым количеством десятичных знаков после запятой). Но в серии из нескольких длин волн скрываются целые числа. Для атомов водорода это странное явление было замечено еще за 40 лет до создания квантовой механики, за 15 лет до гипотезы о световых квантах и вообще за 12 лет до открытия электрона – в 1885 г. Нашлось математическое выражение, включающее одну постоянную величину и целое число, из которого, если последовательно принимать это число равным 3, 4, 5, 6 и 7, получаются одна за другой несколько длин волн, испускаемых или поглощаемых водородом. Такое положение дел представлялось в то время неразрешимой головоломкой, но теперь мы знаем, что эти целые числа – номера разрешенных значений энергии из списка.
От квантовой механики требуется ответ, почему так устроена жизнь электронов в атомах и почему атом можно собрать из ядра и электронов, только если соблюдены жесткие требования дискретности.
Этим ответом не могут быть слова «потому что таковы свойства атома». Это никакое не объяснение. Но ответ может опираться на общие законы природы – применимые к электронам, протонам и т. п. – с возможными дополнениями по поводу каких-либо свойств электронов самих по себе. Тогда мы объясним строение атома через более фундаментальные понятия, напрямую с атомом не связанные. Стоит помнить при этом, что любая цепочка объяснений неизбежно где-то заканчивается: фундаментальные понятия и законы потому и фундаментальны, что не объясняются ни через что другое (наоборот, «всё» объясняется через них).
Один такой фундаментальный квантовый закон и составляет предмет этой главы. Суть его в том, что некоторые используемые при описании мира величины – такие как положение в пространстве и скорость – враждуют друг с другом. Враждуют в том смысле, что не могут одновременно иметь точно определенные значения для одного и того же квантового объекта. Практически так же, как невозможно равенство 0 = 1, невозможно и одновременно снабдить, скажем, электрон точным положением в пространстве и точным значением скорости. Или одно, или другое. Вместе они к электрону не прикрепляются. Это фундаментальный закон природы{8},{9}.
Возможно, здесь самое время подумать, как удачно, что электроны никак не выглядят, – ведь непонятно, как могло бы выглядеть такое необычное, «половинное» (или действительно половинчатое) существование. (Не самая, возможно, удачная метафора, но как действительно представлять себе табуретку, у которой точно определена или форма сиденья, или длина ножек?)
Последствия вражды между положением в пространстве и скоростью многочисленны. Для начала, в квантовом мире запрещен покой. Покой означал бы, что и положение, и скорость (равная в данном случае нулю) определены одновременно. Тут можно потренироваться в подавлении своей интуиции. Так и хочется спросить: «Как это запрещен? А если я возьму и остановлю что-то в одной точке?» А как, простите, вы собираетесь это сделать? С помощью чего именно и как будете контролировать свои действия? Можно попробовать облучать электрон светом, чтобы узнать, где он находится. Для хорошей точности потребуется свет с очень малой длиной волны, но тогда даже один фотон окажется таким энергичным (и будет заодно нести такой импульс), что передаст вашему электрону некоторую скорость. Продолжение рассуждений показывает, что нет процедуры, позволяющей обеспечить полную неподвижность квантового объекта. И это – не последствия нашей неизобретательности, а отражение того факта, что неподвижность невозможна как таковая.
И не только покоя нет. Запрещено еще и перемещаться из одной точки в другую по траектории. Да, в квантовом мире невозможно движение по траектории. Траектория – линия, строго говоря, воображаемая, но она дает неплохое описание того, как движутся обычные тела – например, песчинки, которые я сдул с ладони. Каждая точка траектории – это определенное положение в некоторый момент времени. А поскольку это положение плавно меняется
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев