Читать книгу - "Квантовая механика и парадоксы сознания - Александр Петрович Никонов"
Аннотация к книге "Квантовая механика и парадоксы сознания - Александр Петрович Никонов", которую можно читать онлайн бесплатно без регистрации
В новой книге автор рассказывает о таинственном мире квантовой механики – самой удивительной, труднообъяснимой и мало кем понимаемой главы в книге физики. Квантовая механика известна не только тем, что изучает сам фундамент мироздания, то есть основу основ нашего мира, но и является первым разделом физики, в котором современная наука столкнулась с наблюдателем, то есть с сознанием. А стало быть, рассмотрение этой науки невозможно без изрядной доли экзистенциализма – попыток понять, чем являются сознание, бытие и реальность по сути своей. В мировой литературе попыток ответа такого рода, который предлагает автор, еще не было. Это абсолютно новый взгляд на философию квантовой механики.В формате PDF A4 сохранён издательский дизайн.
Кстати, став физиком, Планк играть на рояле не перестал, и порой они с Эйнштейном, который приносил с собой скрипку, зажигали на пару. Думаю, музыка много потеряла…
Сам Планк был человеком трагической судьбы. Две его дочери умерли молодыми в родах. Старший сын пал на Первой мировой войне в знаменитой Верденской битве, известной как «Верденская мясорубка», где погибло тогда более миллиона человек. Младший сын был казнен в январе 1945 года за участие в покушении на Гитлера, которое организовал полковник фон Штауфенберг. В конце войны дом Планка был разбомблен, и старый уже к тому времени Макс Планк пошел со своей женой, оставшись без всего в этой жизни, куда глаза глядят.
А главной научной трагедией Планка было то, что этот человек, положивший начало квантовой механике и придумавший само слово «квант», так и не поверил в существование квантов. Он-то полагал, что его формулы – это всего лишь паллиатив, костыль, временное вспомогательное решение проблемы, пока физика не придумает что-то посущественнее и пореальнее его квантов. Но все дело в том, что он сам и был – физика! Планк стоял в самом ее передовом ряду и не было никого первее.
Так что же за проблемы возникли у физики в конце XIX века? Какая малая дырочка оказалась столь влиятельной, что разрушила плотину, через которую в физику хлынул целый новый мир, ранее не замечаемый?
Дырочек было две. Первая – несоответствие фактического положения Меркурия его теоретическому положению, просчитанному по ньютоновской механике. Вторая закавыка – та самая ультрафиолетовая катастрофа, которая заключалась в том, что как-то неправильно излучало абсолютно черное тело.
Что такое абсолютно черное тело?
Еще в 1860-х годах один из учителей Планка, Густав Кирхгоф, придумал модельный объект для мысленных экспериментов по термодинамике – абсолютно черное тело (АЧТ). По определению, АЧТ – это такое тело, которое поглощает абсолютно все излучение, падающее на него, и ничего не отражает. Кирхгоф показал, что АЧТ – это еще и лучший излучатель из всех возможных. Ведь тот факт, что абсолютно черное тело поглощает все излучение, говорит о том, что оно нагревается, а значит, излучает тепло (и свет при сильном нагреве)!
Самой распространенной моделью черного тела, которую приводят в пример школьникам, является сфера с внутренней зеркальной или черно-сажевой поверхностью и дырочкой, как на рисунке. Луч света, залетев в дырочку, попадает в ловушку и поглощается сажей или начинает бесконечно отражаться от стенок, потому что вероятность вырваться обратно у него очень мала.
Модель абсолютно черного тела. АЧТ – это не вся сфера, а только дырочка, в которую попадает свет и оттуда уже не вылетает.

Рис. 5
Естественно, как любой нагретый объект, черное тело излучает в широком диапазоне длин волн, причем, по мере нагрева пик излучения смещается в коротковолновую (высокочастотную) область. Ближайший аналог АЧТ – нагретый до красноты или белого каления кусок металла: чем выше температура куска металла, тем белее его свечение.
Так вот, расчеты, проведенные в соответствии с классической физикой, давали очень хорошее совпадение с экспериментом в области длинноволнового излучения (для не сильно нагретых тел), но для тел, нагретых сильно, то есть излучающих в области коротковолновой, классическая физика давала абсурдный результат – тело должно было излучать бесконечно большую энергию!
Это было крайне неприятно – увидеть такое в расчетах!
Зависимость энергии, излучаемой АЧТ, от длины излучаемых волн и температуры его нагрева. Крайняя правая линия, улетающая в бесконечность, – результат теоретического предсказания классической теории для тела, нагретого до температуры 5000 К. Прочие линии – результат эксперимента.

Рис. 6
Эту нелепицу устранил Макс Планк, сделав допущение, что энергия из АЧТ не льется сплошным волновым потоком, а излучается «поштучно», порционно – квантами. Квант есть маленькая неделимая порция. Причем энергия кванта пропорциональна его частоте, а коэффициентом пропорциональности служит некая величина, которую потом назвали «постоянной Планка».
Оформив это свое предположение математически, Планк внес поправки в формулы, и они дали прекрасное совпадение с экспериментом.
Сам Планк в свое предположение о квантах не верил. Ему казалось, что когда-нибудь его вынужденное допущение будет устранено. Однажды Планк гулял со своим сыном-подростком (которого через много лет казнил Гитлер) и на вопрос мальчика, чем отец занимается, ответил, что он или сделал открытие на уровне Исаака Ньютона, или занимается какой-то странной нелепицей.
В общем, Макс Планк, стоявший у истоков квантовой физики, человек, с которого кантовая физика началась! – в кванты не верил.
Вторым человеком, заложившим краеугольный камень в квантовую физику, был Эйнштейн со своей работой по фотоэффекту. И ему квантовая физика жутко не нравилась! Но он, как и Планк, был вынужден строить ее здание – сама природа заставила.
В двух словах напомню историю с фотоэффектом. Дело было так.
В XIX веке открыли явление фотоэффекта – при облучении металла светом из металла начинают выбиваться электроны. Картинка ниже наверняка покажется вам знакомой, и немудрено – вы видели ее на уроках физики.
Световой поток вышибает электроны из катода лампы, и под действием электрического поля они устремляются к аноду, замыкая цепь.

Рис. 7
Как рассуждали представители классической физики эпохи стимпанка? Ну, если свет – это волна, то поливая световым потоком металл, как из шланга, мы постепенно накачиваем электроны энергией, и когда электрон накопит энергию, достаточную для того, чтобы оторваться от ядра атома, он вылетит. Стало быть, чем интенсивнее мы «поливаем» электроны, тем больше будет фотоэффект. А от цвета света, то есть от частоты излучения, эффект зависеть не должен. Однако результат эксперимента оказался полностью противоположным. Оказалось, энергия вылетающих электронов связана не с интенсивностью света (ярче, темнее), а почему-то с его частотой. И при достижении какой-то критически низкой частоты, электроны переставали выбиваться даже при высочайшей интенсивности светового потока.
Почему?
Эйнштейн, занявшийся этой проблемой, закрыл вопрос со свойственной ему гениальностью. Он, взяв на вооружение идею Планка о том, что излучение и поглощение энергии происходит порциями, квантами энергии, заявил:
– Ребят! Свет – не волна! То, как он себя ведет при выбивании электронов, говорит о том, что так вести себя могут только частицы. И чем они энергичнее, тем больше энергия выбитого электрона. А энергия световых частиц зависит от их частоты. То есть влияет не количество частиц (интенсивность света),
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев