Читать книгу - "Геометрия скорби. Размышления о математике, об утрате близких и о жизни - Майкл Фрейм"
Аннотация к книге "Геометрия скорби. Размышления о математике, об утрате близких и о жизни - Майкл Фрейм", которую можно читать онлайн бесплатно без регистрации
Майкл Фрейм (род. 1951), математик, бывший профессор Йельского университета и коллега создателя фрактальной теории Бенуа Мандельброта, в своей книге исследует феномен скорби с точки зрения геометрии. Мы скорбим, потеряв близкого человека, домашнего питомца, прежний образ жизни – нечто любимое и важное для нас. Как могут фракталы, траектории и переменные уменьшить эту душевную боль? По утверждению Фрейма, понимание «геометрии» своих переживаний может помочь пережить утрату. Анализируя скорбь как необратимую потерю, он обращается к законам математики, литературным сюжетам, эволюционной биологии, личному опыту. С их помощью Фрейм выводит собственные теоремы, позволяющие увидеть и проанализировать через «самоподобие» жизненного выбора, теорию мультивселенной и проецирование негативных эмоций на разные «пространства» сознания сложную закономерность чувств, составляющих скорбь.
27
9. Репродукции «Предела круга III» Эшера можно найти на Википедии https://en.wikipedia.org/wiki/Circle_Limit_III и в книге Esher M. C. M. C. Esher: 29 Master Prints. New York: Abrams, 1983.
28
8* Гарольд Коксетер (1907–2003) – канадский математик британского происхождения. Считается одним из крупнейших геометров XX века.
29
9* Шон Кэрролл (род. 1966) – американский физик-теоретик и космолог. Специализируется на исследованиях темной энергии и общей теории относительности.
30
10. Carroll S. Something Deeply Hidden: Quantum Worlds and the Emergence of Spacetime. New York: Dutton, 2019. Рус. пер.: Кэрролл Ш. Квантовые миры и возникновение пространства-времени [2021] / пер. О. Сивченко. СПб.: Питер, 2022.
31
11. Некоторые подробности и дополнительные примеры фракталов, созданных с помощью памяти, приведены в разделе 2.5 книги Майкла Фрейма и Амелии Урри «Фрактальные миры» (Frame M., Urry A. Fractal Worlds: Grown, Built, and Imagined. New Haven, CT: Yale University Press, 2016).
32
12. Это доказательство, известное как «Теорема Гёделя о неполноте», было настолько неожиданным, а сама идея, лежащая в его основе, настолько гениальной, что Курт Гёдель и Альберт Эйнштейн стали часто прогуливаться вместе по территории Института перспективных исследований в Принстоне. Эйнштейн заметил, что стал чаще захаживать в свой кабинет «только ради чести прогуляться до дома с Куртом Гёделем». История их дружбы прекрасно рассказана в книге Джима Холта «Идеи с границы познания: Эйнштейн, Гёдель и философия науки» (Холт Дж. Идеи с границы познания: Эйнштейн, Гёдель и философия науки [2018] / пер. А. Бродоцкой. М.: АСТ, 2019. С. 13); именно из нее я процитировал слова Эйнштейна. Книга Эрнеста Нагеля и Джеймса Ньюмена «Теорема Гёделя» (Нагель Э., Ньюмен Дж. Теорема Гёделя [1958] / пер. Ю. А. Гастева. М.: КРАСАНД, 2009) дает ясное и компактное объяснение Теоремы Гёделя о неполноте. А поразительная книга Дугласа Хофштадтера «Гёдель, Эшер, Бах: эта бесконечная гирлянда» (Хофштадтер Д. Р. Гёдель, Эшер, Бах: эта бесконечная гирлянда [1979] / пер. М. А. Эскиной. Самара: Бахрах-М, 2001) представляет заметно более развернутое и невероятно увлекательное объяснение теоремы Гёделя, где каждая глава предваряется оригинальной притчей об Ахилле, черепахе и их друзьях.
33
13. Доказательство того, что эти три классические задачи греческой геометрии не могут быть решены, пользуется так называемой теорией Галуа: данный раздел математики наглядно представлен в книге Иэна Стюарта «Теория Галуа» (Stewart I. Galois Theory, 2nd ed. London: Chapman and Hall, 1973). С помощью искусных аргументов эти три геометрические задачи превращаются в алгебраические конструкции, а затем показывается, что они невозможны. Как ни удивительно, но некоторые из этих задач могут быть решены в неевклидовой геометрии.
34
14. Последовательность рисунков, объясняющих, как кот превращается в треугольник Серпинского, показана на странице 133. Вы поймете, когда увидите.
35
10* Джон Мьюр (1838–1914) – американский естествоиспытатель, писатель, защитник дикой природы.
36
11* Рейчел Карсон (1907–1964) – американский биолог, деятельница в сфере охраны природы, писательница.
37
12* Эдвард Эбби (1927–1989) – американский писатель, эссеист, активист-эколог.
38
13* Мартин Гарднер (1914–2010) – американский математик-любитель, писатель, популяризатор науки.
39
15. Гарднер М. Есть идея! [1978] / пер. Ю. А. Данилова. М.: Мир, 1982.
40
16. Борхес Х. Л. Лабиринты / пер. В. Кулагиной-Ярцевой, Е. Лысенко, И. Петровского, Б. Дубина, В. Багно. М.: АСТ, 2016. Эта книга, по-моему, лучше всего вводит в мир темпераментной фантазии Борхеса.
41
17. Например, Борхес написал рецензию на книгу Эдварда Казнера и Джеймса Ньюмена «Математика и воображение» (см. пер. Б. Дубина в сборнике: Борхес Х. Л. Зеркало загадок / пер. К. Корконосенко, Б. Дубина, Б. Ковалева, В. Багно. М.: КоЛибри, 2022).
42
18. Рассказ «Вавилонская библиотека» Борхеса и эссе «Аватары черепахи» являются прекрасными образцами парадоксов и головоломок.
43
19. Арифметика бесконечных чисел описана Борхесом на первых страницах его эссе «Учение о циклах» (см. пер. Е. Лысенко в сборнике: Борхес Х. Л. Лабиринты / пер. В. Кулагиной-Ярцевой, Е. Лысенко, И. Петровского, Б. Дубина, В. Багно. М.: АСТ, 2016).
44
20. Интересные вариации Борхес представляет в первом рассказе из сборника «Лабиринты» «Тлён, Укбар, Орбис Терциус».
45
21. Этот круг не настолько очевиден, как в романе Жозе Сарамаго «Перебои в смерти» (Сарамаго Ж. Перебои в смерти [2005] / пер. А. Богдановского. СПб.: Азбука, 2015), но тем не менее это круг. Короткий роман Сарамаго является прекрасным образцом сюжетной геометрии, представляющей собой замкнутый круг. Подробнее мы рассмотрим данный роман в третьей главе.
46
22. Борхес Х. Л. Циклическое время [1941] / пер. И. Петровского // Лабиринты. М.: АСТ, 2016. С. 109–113.
47
14* Здесь и далее цитируется пер. М. Былинкиной.
48
15* Макс Тегмарк (род. 1967) – шведско-американский космолог и астрофизик.
49
23. Насколько велико число 1010118? Число 10118 – это единица и 118 нулей, значит, 1010118 – это единица и 10118 нулей. Так уж ли это много? Количество частиц в наблюдаемой Вселенной равно примерно 1080, то есть 10118 (заметим, это только количество нулей в нашем числе) равно количеству частиц в 1038 копий наблюдаемой Вселенной.
50
24. Немного космологии. См. статью Макса Тегмарка «Параллельные Вселенные» (Tegmark M. Parallel Universes // Scientific American. Vol. 288. May 2003. P. 40–51) и его книгу о математизации космологии (Тегмарк М. Наша математическая Вселенная: В поисках фундаментальной природы реальности [2014] / пер. А. Сергеева. М.: АСТ, 2017). Основные идеи таковы: «Существует внешняя физическая реальность, полностью независимая от нас, людей» и «Наша внешняя физическая реальность является математической структурой». Это очень интересная книга.
51
25. Первые вычисления относительно того, как модель Большого взрыва может
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев