Читать книгу - "Власть роботов. Как подготовиться к неизбежному - Мартин Форд"
Аннотация к книге "Власть роботов. Как подготовиться к неизбежному - Мартин Форд", которую можно читать онлайн бесплатно без регистрации
Искусственный интеллект (ИИ) уже прочно вошел в нашу жизнь, однако Мартин Форд утверждает, что настоящая революция еще впереди. В этой книге он очерчивает свое представление о будущем ИИ. С одной стороны, эта технология видится ему как мощный общедоступный ресурс, что-то вроде нового электрического тока, который в конечном счете преобразит практически все области экономики, общественной жизни и культуры. С другой, ИИ несет с собой реальные опасности как для отдельных людей, так и для общества в целом. Он делает возможным появление дипфейков, способных ввергнуть в хаос общество, порождает беспрецедентные механизмы социального контроля и может быть совершенно необъективным. Такую технологию нельзя принимать слепо и бездумно, и эта книга должна помочь человечеству подготовиться к грядущему — верно понять происходящее, отделить сенсации от реальности и найти оптимальные способы обеспечения процветания каждого из нас и всего общества в целом.
Положительная сторона сложившейся ситуации видится в том, что на сей раз вместо противоборства философских систем символистов и коннекционистов нас, возможно, ждет примирение и попытка интеграции. Новая область исследования была названа «нейросимволический ИИ». Не исключено, что это одно из самых важных начинаний для дальнейшей судьбы искусственного интеллекта. Десятилетия соперничества, порой жесткого, остались в прошлом, и новое поколение исследователей ИИ готово попытаться преодолеть разрыв между двумя подходами. Дэвид Кокс, директор лаборатории исследования ИИ Watson в Кембридже — совместного детища МТИ и IBM, говорит, что молодые исследователи «не имеют ничего общего с этой историей» и «готовы исследовать пересечения [подходов] и просто хотят заниматься чем-то крутым в области ИИ»[182].
Существует два взгляда на пути достижения этой интеграции. Можно пойти напрямую, просто создавая гибридные системы, объединяющие нейронные сети с программными модулями на основе традиционных методов программирования. Алгоритмы, способные поддерживать логическое и символическое мышление, необходимо каким-то образом связать с глубокими нейронными сетями, сфокусированными на обучении. Это стратегия команды Дэвида Ферруччи из Elemental Cognition. Можно пойти другим путем — найти способ реализации возможностей символического ИИ непосредственно в архитектуре нейронных сетей. Этого можно достичь, сконструировав необходимую структуру в глубокой нейросети или — что мне представляется намного более умозрительным — разработав и систему глубокого обучения, и методику обучения настолько эффективные, чтобы требуемая структура возникла естественным образом сама. Возможно, молодые исследователи захотят изучить все возможности, но между специалистами, уже зарекомендовавшими себя в этой области, не утихает острая полемика по вопросу о том, какой путь является наилучшим.
Одним из самых яростных поборников гибридного подхода является Гэри Маркус, до недавнего времени профессор психологии и нейробиологии Нью-Йоркского университета. Маркус всегда резко критиковал чрезмерную, на его взгляд, концентрацию на глубоком обучении и в статьях и дебатах отстаивал мысль, что глубокие нейросети так и останутся поверхностными и хрупкими, а вероятность появления универсального интеллекта будет крайне малой, если отказаться от прямого использования идей, почерпнутых из символического ИИ. Маркус посвятил большую часть своей карьеры исследователя изучению того, как дети учатся и овладевают речью, и считает чрезвычайно маловероятным, что чистый подход на основе глубокого обучения позволит приблизиться к удивительным возможностям маленького человека. Его критика не всегда адекватно воспринималась сообществом ученых, занимающихся глубоким обучением. Несмотря на участие в создании стартапа по машинному обучению, который был куплен компанией Uber в 2015 году, этот лагерь считает его аутсайдером, не внесшим существенного вклада в область ИИ.
В целом опытные исследователи, тесно связанные с глубоким обучением, относятся к гибридному подходу пренебрежительно. Йошуа Бенджио сказал мне, что целью должно стать «решение части тех же проблем, которые пытается решить классический ИИ, но с использованием строительных блоков, взятых из глубокого обучения»[183]. Джефф Хинтон демонстрирует откровенное пренебрежение, заявляя, что «не видит в гибридах решения», и сравнивая подобную систему с гибридным автомобилем в духе машины Руба Голдберга[184], в которой электродвигатель используется для впрыска бензина в двигатель внутреннего сгорания[185]. Дело в том, что пока не существует ясной стратегии встраивания возможностей символического ИИ в систему, целиком состоящую из нейронных сетей. Как отмечает Маркус, многие самые значительные достижения глубокого обучения, включая созданную DeepMind систему AlphaGo, являются в действительности гибридными системами, поскольку добиваются успеха только благодаря тому, что в дополнение к глубоким нейросетям используют традиционные алгоритмы поиска.
Пока исследователи спорят об эффективности гибридных моделей, параллельно разворачиваются дебаты о важности врожденной структуры, встроенной в системы машинного обучения. Многие глубокие нейросети действительно в той или иной степени включают предварительно разработанную структуру — примером являются сверточные архитектуры, используемые для распознавания зрительных образов. Однако многие «чистые» сторонники глубокого обучения считают, что такую структуру можно свести к минимуму и что эта технология способна развиваться практически с чистого листа. Например, Ян Лекун сказал мне, что «в конечном итоге нам не будут нужны точные конкретные структуры». Он подчеркивает отсутствие свидетельств наличия подобных структур в человеческом мозге, отмечая, что «микроструктура коры, судя по всему, является очень, очень однородной, будь то в зрительной или префронтальной областях»[186]. Исследователи из этого лагеря утверждают, что нужно сосредоточиться на разработке усовершенствованных методов обучения, позволяющих относительно неспециализированным нейронным сетям достигать лучшего понимания.
Такие исследователи, как Маркус, с опытом изучения когнитивного развития детей, яростно восстают против философии «чистого листа». Головной мозг маленького ребенка совершенно явно обладает врожденными возможностями, способствующими началу процесса обучения. Уже в первые дни жизни новорожденные распознают человеческие лица. В животном мире наличие действенного интеллекта, не зависящего от обучения, еще более очевидно. Энтони Задор, нейробиолог лаборатории Cold Spring Harbor, отмечает, что «белка может прыгать с дерева на дерево через считаные месяцы после рождения, жеребенок через несколько часов может ходить, а пауки рождаются с умением охотиться»[187]. Гэри Маркус часто приводит в пример альпийского козла (вид горных козлов, проводящих большую часть своей жизни на крутых коварных склонах). Новорожденные козлята уже через несколько часов способны стоять и передвигаться по склонам в среде обитания, где любое обучение методом проб и ошибок неминуемо закончилось бы смертью. Это встроенная технология: она поставляется в готовом виде. Исследователи из этого лагеря считают, что универсальный, гибкий искусственный интеллект также потребует когнитивных механизмов, встроенных непосредственно в структуры нейросетей или интегрированных в рамках гибридного подхода.
Сторонники глубокого обучения иногда говорят, что, даже если врожденная структура важна, она, скорее всего, возникнет естественным образом — как часть устойчивого процесса обучения. Однако если взять биологический мозг, то, на мой взгляд, никакая структура в нем не может являться результатом длительного обучения. Мы знаем, что обучение в течение жизни животного в определенной мере перестраивает его мозг; часто говорят, например, что нейроны, «которые одновременно возбуждаются, связаны вместе». Проблема в том, что у отдельно взятого организма нет возможности передать нейронную структуру, сформированную обучением в течение всей жизни, своему потомству. Невозможно чему-то научиться и добиться, чтобы информация, описывающая структуру мозга, связанную с этим знанием, была встроена в генетический код яйцеклетки или сперматозоида животного. Какая бы мозговая структура ни сформировалась в процессе жизни индивида, она умирает вместе с ним. Таким образом, представляется очевидным, что любая структура в мозге должна быть результатом нормального эволюционного процесса, иными словами, случайных мутаций, которые иногда делают организм более приспособленным к своей среде обитания и, как результат, с большей вероятностью передаются по наследству. Одна из возможностей на этом пути — непосредственное копирование такого процесса путем использования эволюционных или генетических алгоритмов. Однако намного быстрее может оказаться конструирование
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Алла10 август 14:46 Мне очень понравилась эта книга, когда я её читала в первый раз. А во второй понравилась еще больше. Чувствую,что буду читать и перечитывать периодически.Спасибо автору Выбор без права выбора - Ольга Смирнова
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная