Books-Lib.com » Читать книги » Разная литература » Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов

Читать книгу - "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов"

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Разная литература книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов' автора Алексей Михайлович Семихатов прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

339 0 14:52, 30-10-2022
Автор:Алексей Михайлович Семихатов Жанр:Читать книги / Разная литература Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов", которую можно читать онлайн бесплатно без регистрации

Рассказ о фундаментальной научной картине мира в развитии от более наглядного к более абстрактному: от брошенного камня до объяснения уравнений Эйнштейна и Шрёдингера. Человек разбирается в устройстве Вселенной, наблюдая за движением и его последствиями, догадываясь о правилах, которые регулируют все, что происходит, и получая подсказки о скрытых частях мира или о новых правилах из несоответствий между теоретически ожидаемым и реальным движением: знаменитые примеры включают предсказанное существование Нептуна, Планеты 9 и невидимого вещества в галактиках, причины ускоренного расширения Вселенной, квантовую природу теплового излучения. Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель». В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие. Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.

1 ... 163 164 165 166 167 168 169 170 171 ... 202
Перейти на страницу:
измеряя его положение, мы будем обнаруживать его в точке q1 с относительной вероятностью 102 и в точке q2 с относительной вероятностью (0,1)2. Если оставить на время в стороне некоторые тонкости, то правило Борна говорит, что коэффициенты перед различными слагаемыми в волновой функции надо возводить в квадрат, в результате получатся (относительные) вероятности[263]. В уже встречавшемся нам состоянии |↑⟩э |умерла⟩к + |↓⟩э |жива⟩к коэффициенты перед каждым из двух слагаемых одинаковы, поэтому исходы (жива или умерла) будут встречаться с 50 %-ной вероятностью. Если же электрон влетает в прибор в состоянии то эволюция, включающая кошку, приведет к состоянию согласно которому вероятности оказаться мертвой или живой равны 75 % и 25 % (два коэффициента в волновой функции уже выбраны так, что их квадраты – настоящие, а не относительные вероятности, равные 3/4 и 1/4).

Отложенная на время тонкость состоит вот в чем. Правило работает так просто, если все исходы взаимоисключающие. Дело так и обстоит, когда исходы – возможные значения какой-либо физической величины, взятые поодиночке, например – чтобы отвлечься от спина – различные значения энергии (которых, как правило, много или бесконечно много). Другой пример взаимоисключающих исходов – электрон в одной из неперекрывающихся областей в пространстве. Если электрон находится в состоянии a · |в области 1⟩ + b · |в области 2⟩ + c · |в области 3⟩, то его можно обнаружить в этих областях с (относительными) вероятностями a2, b2, c2. При этом, например, вероятность обнаружить его или в области 1, или в области 2 получается простым сложением: она равна a2 + b2. Две части волновой функции описывают здесь взаимоисключающие события, которые никаким образом друг на друга не влияют, а потому и вероятности их определяются каждой частью волновой функции по отдельности. Но если области 1 и 2 перекрываются, то вероятность, что электрон окажется в любой из них, отражает факт этого перекрытия: она равна a2 + b2 + 2 · (число) · ab. По поводу того, как определить появляющееся здесь число, исходя из вида волновой функции, имеются ясные математические указания; они и выражают, насколько значителен эффект перекрытия. Для произвольных состояний |состояние 1⟩ и |состояние 2⟩ это число обозначают как ⟨состояние 2 | состояние 1⟩ и во всех случаях, когда оно не равно нулю, говорят, что эти два состояния интерферируют. Интерферирующие части волновой функции не определяют вероятности поодиночке, а дают еще и совместный вклад в вероятности. Краткий итог: правило Борна предельно просто в формулировке и применении, когда состояния не интерферируют, и требует кое-какой дополнительной математики, когда интерферируют.

*****

Главная тайна квантовой механики. Предложенное Борном в 1926 г. правило «вычислять квадраты» ни разу не подвело на практике. Идея принесла ее автору Нобелевскую премию (в 1954 г.). С тех пор появилось много работ, в которых с разных точек зрения показано, что ничем, кроме квадрата, вероятности определяться и не могут. Однако «все просто» только задним числом. Для начала статью Борна, в которой утверждалась связь волновой функции с вероятностями, не приняли к публикации в журнале, куда она была первоначально направлена. Она вышла в другом журнале, и случившееся промедление сыграло ключевую роль: Борн успел исправить свое первоначальное утверждение. Вывод, сформулированный в статье, состоял в том, что вероятность пропорциональна самой волновой функции. Текст остался без изменения, но при корректуре (т. е. в самый последний момент перед собственно печатью) было добавлено примечание, состоящее из одной фразы: «Более тщательный анализ показывает, что вероятность пропорциональна квадрату [волновой функции]».

К правилу Борна надо относиться как к закону природы: это обобщение наблюдений, которое отлично работает. Это вообще-то довольно удивительная привязка волновой функции, управляемой детерминистским уравнением, к вероятностной природе мира. Но это и на редкость непонятный закон природы. Вероятности чего? Того, что случится один из возможных результатов. Но вот логическая цепочка, заводящая в странное место. Если волновая функция – это какая-то сумма a · |q⟩ + b · |r⟩ + c · |s⟩ + …, а q, r, s и т. д. – это возможные значения некоторой величины (например, количества движения или энергии), то «случиться» может факт обнаружения (измерения) одного из этих значений, например q. Уже случившееся перестает быть одной из возможностей – оно становится фактом. Одновременно с этим все остальные возможности r, s и т. д. перестают быть возможностями; они не реализовались. Но факт о состоянии мира после измерения должен быть отражен в волновой функции. Та волновая функция, в которой содержались различные потенциальные возможности, больше не имеет отношения к изучаемой системе, а имеет отношение только та ее часть, которая соответствует свершившемуся результату, a · |q⟩. Все остальные слагаемые b · |r⟩ + c · |s⟩ + … в волновой функции должны исчезнуть, просто заменившись на нуль.

Проблема измерения: чем оно отличается от других процессов?

А это плохая новость, потому что такое изменение волновой функции – «схлопывание» от суммы к одному слагаемому – не может описываться уравнением Шрёдингера. Но сейчас будет еще хуже. «Выпадение» одного варианта из нескольких или многих приводит к отрицанию уравнения Шрёдингера всякий раз, когда… – когда что? Когда мы измеряем какую-то величину (компоненту спина; энергию; …), вынуждены заключить мы. Но, внимание, что такое измерение? Надо полагать, это нечто, производимое с помощью макроскопического прибора: поскольку сами мы макроскопические, мы можем судить о том, какой исход случился, по положению стрелки прибора, по пятну в определенном месте на фотопластине или по чему-то подобному. Кажется поэтому, что когда электрон вступает во взаимодействие с прибором, по существу становясь его частью, – вот тогда все и «случается»: прибор фиксирует определенное значение измеряемой величины, а волновая функция схлопывается в то состояние, которое отвечает измеренному значению. Однако откуда система из электронов, нейтронов и протонов знает, во-первых, что такая-то их конфигурация делится на исследуемую систему и измерительный прибор и, во-вторых, что именно сейчас, оказывается, измеряется компонента спина вдоль конкретного направления? Мы едва ли готовы думать, что обычное взаимодействие между изначально выбранным электроном и прочими электронами и протонами, составляющими прибор, начинает управляться особыми законами, стоит нам только решить, что сейчас происходит измерение. Сделаем еще одну попытку выкрутиться: быть может, какие-то особые законы, отличающиеся от «регулярных» квантово-механических, действуют для «большого» – макроскопического – прибора? Но если так, то где граница, на которой законы квантовой механики теряют силу и заменяются на что-то еще?

1 ... 163 164 165 166 167 168 169 170 171 ... 202
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: