Books-Lib.com » Читать книги » Разная литература » Путешествие в Страну элементов - Л. Бобров

Читать книгу - "Путешествие в Страну элементов - Л. Бобров"

Путешествие в Страну элементов - Л. Бобров - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Разная литература книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Путешествие в Страну элементов - Л. Бобров' автора Л. Бобров прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

121 0 23:00, 15-12-2022
Автор:Л. Бобров Жанр:Читать книги / Разная литература Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Путешествие в Страну элементов - Л. Бобров", которую можно читать онлайн бесплатно без регистрации

ОТ СОСТАВИТЕЛЕЙ Эта книга не учебник и тем более не химическая энциклопедия. Чтобы рассказать обо всех элементах периодической системы, даже останавливаясь лишь на их наиболее характерных чертах, потребовались бы целые тома. Поэтому маршрут нашего путешествия в Страну элементов проходит через ее главные «достопримечательности». Читатель познакомится с теми химическими элементами, которые составляют основное содержание неорганической химии и находят особенно большое применение в разных областях человеческой деятельности. Комсомол — заботливый и требовательный шеф большой химии — объявил Всесоюзный поход за знания. Если «Путешествие в Страну элементов» в какой-то мере пригодится в этом пути — значит книга выполнила свою задачу.

1 ... 11 12 13 14 15 16 17 18 19 ... 88
Перейти на страницу:
Ну, тут уж делать нечего, и нашим двум электронам приходится потесниться. У следующего за цинком металла галлия на внешней орбите три электрона, у германия — четыре. А расположенные за германием мышьяк, селен и бром уже оказываются типичными неметаллами, то есть появляется закономерность изменения свойств такая же, как и в предыдущих (малых) периодах. Так образовался первый большой период. В дальнейшем, при заполнении следующих больших периодов, картина будет повторяться. С той лишь разницей, что в шестом периоде, после того как у бария появятся два электрона на внешней орбите, дальнейшее заполнение пойдет следующим образом. У лантана один электрон разместится на предыдущей, пятой орбите, а у лантаноидов начнется заполнение глубоко лежащей четвертой орбиты.

Вот, оказывается, в чем причина поразительного сходства этих элементов. В самом деле, единственный электрон с пятой орбиты «взять взаймы» нетрудно, но попробуйте добраться до четвертой орбиты! Поэтому и приходится ждать, пока она не будет заполнена целиком, а до тех пор довольствоваться лишь тремя электронами. Вот так и случилось, что целых четырнадцать элементов проявляют одну валентность 3+ и потому похожи друг на друга по своим химическим свойствам, как близнецы.

Но химическое сходство или различие элементов зависит не только от строения электронных орбит, но и от их числа. Ведь с каждой новой орбитой, с каждым новым периодом атом увеличивается в размерах. В результате электроны последних орбит уже так далеко расположены от притягивающего их ядра, что им ничего не стоит покинуть атом при самом незначительном воздействии. Вот почему самые металличные металлы, цезий и франций, расположены в левом нижнем углу периодической системы, а самый неметалличный неметалл, фтор, — наоборот, в правом верхнем. Лантаноиды еще и потому так похожи друг на друга, что заполнение электронами глубоко лежащей внутренней орбиты сопровождается не увеличением размеров атомов, а незначительным уменьшением за счет возросшего положительного заряда ядра. Более того, в результате такого «лантаноидного сжатия» следующие за ними элементы гафний и тантал имеют в точности такие же размеры атомов, как и их аналоги цирконий и ниобий, и потому цирконий особенно похож по своим свойствам на гафний, а ниобий — на тантал.

И, наконец, несколько слов о положении в системе водорода. Помещая водород в первую группу, мы должны отчетливо представлять себе, что делаем это лишь по единственному признаку — один электрон на орбите. Но ведь водород может проявлять валентность и 1–, то есть, подобно галогенам, он может принимать на свою орбиту один электрон, становясь отрицательно заряженным. Известен целый класс подобных соединений. Они называются гидридами. Например, гидрид кальция CaH2, гидрид лития LiH. По этому признаку водород с полным правом можно поместить и в седьмую группу.

А что же дальше?

Можем ли мы сказать, что в наши дни периодическая система целиком и полностью безупречна? Пожалуй, все-таки нет. Взять хотя бы те же лантаноиды. То, что их помещают всего лишь в одну клетку лантана, оправдано с точки зрения теории строения электронных оболочек. Но тем самым в «короткую» форму таблицы Менделеева (которая изображена и на нашей цветной вкладке) вносится некоторый элемент искусственности. Далеко не все ясно и с положением трансурановых элементов. Этот вопрос сейчас вызывает очень много споров. Одни ученые полагают, что в седьмом периоде нужно выделить семейство актиноидов, аналогичное лантаноидам, и поместить торий, протактиний, уран и 11 трансурановых элементов (общим числом 14, как в случае лантаноидов) в клетку актиния (это показано на вкладке). Другие исследователи считают разумным выделить семейства уранидов и кюридов, оставив торий, протактиний и уран на прежних местах. Словом, ясности пока маловато. Ее внесет будущее.

Безусловно, многое еще ожидает впереди периодическую систему. Трудно гадать, какие еще дополнения и уточнения будут в нее внесены. Нельзя лишь сомневаться в том, что «будущее не разрушение периодическому закону, а развитие и расширение обещает». Так говорил Менделеев. Его слова многократно подтверждались и будут подтверждаться в ходе развития науки.

Металлы легче воды

Можно ли металл резать ножом? И даже костяным, которым обычно разрезают страницы книг? Мять пальцами, как воск? Расплавить теплом руки? И, наконец, может ли металл плавать в воде?

С первого взгляда вопросы эти кажутся несколько странными: в повседневной жизни мы привыкли иметь дело с твердыми, тугоплавкими металлами… И тем не менее существуют металлы мягкие, как воск, не тонущие в воде, плавящиеся от тепла руки. И более того, с точки зрения химических свойств они являются типичными: очень легко образуют катионы. При взаимодействии с водой они дают сильные щелочи; потому-то их и называют щелочными. Это литий, натрий, калий, рубидий и цезий.

Если вынуть кусочек щелочного металла из банки с керосином, где их обычно хранят, и разрезать ножом, то можно увидеть, что срез имеет серебристо-белый оттенок. Но стоит кусочку совсем немного побыть на воздухе, как срез темнеет и теряет свой блеск: металл взаимодействует с влагой воздуха — образуется пленка гидроокиси. Она поглощает углекислый газ воздуха и превращается в карбонат. Щелочные металлы очень активны. Потому их хранят в керосине. Если же бросить в воду маленький кусочек, например, натрия, он превратится в сверкающий шарик и, как паук-серебрянка, забегает по поверхности воды с потрескиванием и вспышками, подталкиваемый пузырьками образующегося водорода. Выделяется много тепла. Большее количество металла может вызвать воспламенение водорода и даже взрыв.

Необычная активность щелочных металлов объясняется слабой связью единственного внешнего электрона с атомом.

Три щелочных элемента — литий, натрий и калий — не тонут в воде. Удельный вес лития равен 0,534, он почти в два раза легче воды и в 40 раз легче осмия — самого тяжелого металла.

Пар межпланетных кораблей

Космический корабль преодолел земное притяжение. Мощные двигатели уже не нужны. Они требуют слишком много горючего. Что же заменит их в космосе? Ионный двигатель. Он очень прост. Вот его схема. Мощные солнечные батареи раскаляют пластины вольфрама. На них подается самый легкоплавкий и самый активный щелочной металл цезий.

Под действием тепла, излучаемого вольфрамом, цезий ионизируется. Образовавшееся ионное облако разгоняется в электростатическом поле при напряжении порядка 10 100 вольт. Со скоростью 12 миллионов сантиметров в секунду ионы цезия вылетают из сопла ракеты. Образуется необычайно мощная удельная тяга в 12 000 кг·сек/кг[3], но масса ионного луча очень мала, общая тяга двигателя, сообщают американцы, не превышает одного килограмма.

Однако в космосе и такой двигатель сообщит современному планетолету высокую скорость. Отметим: в ионном двигателе цезий не топливо, он лишь переносчик энергии солнца, подобно пару, переносчику энергии

1 ... 11 12 13 14 15 16 17 18 19 ... 88
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: