Books-Lib.com » Читать книги » Историческая проза » История математики - Ричард Манкевич

Читать книгу - "История математики - Ричард Манкевич"

История математики - Ричард Манкевич - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Историческая проза книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'История математики - Ричард Манкевич' автора Ричард Манкевич прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

281 0 13:31, 25-05-2019
Автор:Ричард Манкевич Жанр:Читать книги / Историческая проза Год публикации:2011 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
00

Аннотация к книге "История математики - Ричард Манкевич", которую можно читать онлайн бесплатно без регистрации

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских „шестидесятников“ до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века… Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.
1 ... 22 23 24 25 26 27 28 29 30 ... 50
Перейти на страницу:

Математика больше не могла избегать понятий бесконечности и бесконечно малых величин — Сциллы и Харибды греческой математики. Кеплер использовал инфинитезимальный метод при вычислении площади сектора эллиптической орбиты, по которому планета проходит за определенное время. Вот еще более впечатляющий пример. В книге под названием «Новая стереометрия винных бочек» (1615) Кеплер рассчитал объем винной бочки, используя бесконечно большое число бесконечно малых дощечек. Галилей верил в реальное существование бесконечности, приводя в пример круг, который он считал многоугольником с бесконечным числом сторон. В то же самое время итальянский математик Бонавентура Франческо Кавальери (1598–1647), ученик Галилея, а с 1629 года — профессор математики в Болонье, издал свой труд, здоровенный том почти в семьсот страниц, посвященный методам вычисления площадей и объемов. В этой работе, именуемой «Геометрия, развитая новым способом при помощи неделимых непрерывного» (1635), обсуждались различные методы вычисления неделимых бесконечно малых величин, причем площади плоских фигур считались составленными из неделимых линий, а объемные фигуры предполагались состоящими из неделимых плоских объектов. Самым главным его результатом стала формула площади фигуры, ограниченной кривыми: у = хn при любом целочисленном n.

Теперь давайте хотя бы бегло рассмотрим, как развивались события, предшествовавшие рождению дифференциального и интегрального исчислений, — например, каким образом определялись тангенсы кривых. Пьер де Ферма (1601–1665) добился некоторых важных результатов, однако не стал публиковать их. Вместо этого он активно делился своими открытиями в переписке со многими математиками того времени. Эту корреспондентскую сеть организовал Маренн Мерсенн (1588–1648). Ферма разработал методы, позволяющие найти тангенс в любой точке полинома, а также методы определения максимума и минимума этой кривой. Он также вновь открыл правила Кавальери для вычисления площадей фигур, ограниченных кривыми вида у = хn, расширив их множество таким образом, что теперь n могло быть как положительным, так и отрицательным. Единственным случаем, выходящим за рамки общего правила, был случай n = -1 — эта кривая, как известно, представляет собой логарифмическую функцию. Методы Ферма очень близки тем к современному дифференциальному исчислению, за исключением того, что у Ферма не использовалось понятие предельного перехода. Ни в одном из трудов ученого, посвященных анализу бесконечно малых величин, не упоминается, что задачи построения тангенсов и вычисления площадей, по существу, обратны по отношению друг к другу. При этом он не расширил диапазон используемых функций.

Изобилие до-дифференциальных и до-интегральных методов вскоре сформировалось в новую ветвь математики. Как это часто бывает в истории, революционные методы уже витали в воздухе и только и ждали человека, способного уловить их и придать им зримую форму. В данном случае честь изобретения метода отдается сразу двум ученым — Исааку Ньютону и Готфриду Лейбницу. Как в случае любого совместного изобретения, всегда есть некоторое сомнение в том, кто из них все-таки оказался первым, так что споры об этом шли по всей Европе.

Исаак Ньютон родился на Рождество 1642 года — в год смерти Галилея. В 1661 году он поступил в Тринити-колледж в Кембридже, а в 1664-м — получил диплом о высшем образовании. В течение последующих двух лет колледж был закрыт из-за чумы, и Ньютон возвратился домой в Линкольншир. Позднее он писал, что именно тогда совершил известные прорывы в науке — открыл уравнение с бесконечным рядом членов, закон всемирного тяготения, а также дифференциальное и интегральное исчисления. Это могло бы показаться чрезмерным упрощением, но в 1669 году он написал работу «Анализ с помощью уравнений с бесконечным числом членов», в которой он рассматривал бесконечный полином так же, как конечный, и позднее распространил бином Ньютона на любую рациональную степень. «Анализ…» также содержал первое описание дифференциального и интегрального исчислений, основанных на методе, похожем на метод Ферма, однако в нем использовались большие степени вследствие работы с бесконечными рядами. Именно в этом труде вычисление площади фигуры, ограниченной кривой, впервые было представлено как задача, обратная нахождению тангенса. В 1671 году Ньютон написал другой труд о том, что он назвал флюентами и флюксиями — переменными, или текущими, величинами (флюент — от лат. fluo, «теку»), и скоростями их изменения. В этой работе он изображал величины х и у как функции времени, а х´ и у´ — как скорости их изменения. Величины, насколько изменяются сами х и у — собственно производные, — были обозначены х´ и у´. Ньютон пришел к этой идее, рассматривая линию как местоположение точки, перемещающейся в пространстве. Время служит в этой системе невидимым хронометром и не появляется в качестве отдельной переменной t. К сожалению, Ньютон держал все рассуждения при себе, показывая коллегам лишь некоторые из своих работ. «Анализ…» не издавалась вплоть до 1711 года, а описание метода вычисления производных появилось на английском языке лишь в 1736 году. Впервые ученый кратко опубликовал свои выводы — в виде нескольких, крайне трудных для понимания пассажей — в «Началах», изданных в 1687 году. В самих «Началах» дифференциальное и интегральное исчисления практически не фигурируют. Ньютон описывал все свои построения в области математической физики, пользуясь терминами геометрии. Его упорный отказ издавать свои работы можно объяснить отвращением к публичным спорам и дрязгам, которые могли за ними последовать. Он уже конфликтовал с Робертом Гуком по вопросам оптики (Ньютон дождался смерти коллеги и лишь затем опубликовал свою «Оптику»). Даже «Начала» никогда не появились бы на свет, если бы не настоятельные требования и финансовая поддержка Эдмунда Галлея. Ньютон хотел лишь одного — чтобы его оставили в покое и не мешали работать. В итоге это привело к самому решительному сражению в его жизни.

В «Началах» есть раздел (это Отдел I Книги I), носящий название «О методе первых и последних отношений, при помощи которого последующее доказывается». В нем Ньютон дает геометрическую трактовку ключевых идей, касающихся дифференциального и интегрального исчислений. В другом разделе перечисляются некоторые результаты того, что Ньютон назвал «моментом любого происхождения», — теперь мы назвали бы это термином «дифференциал». Это первое публичное упоминание о новом виде исчисления, и неудивительно, что, кроме нескольких математиков, научный мир поначалу не пришел в восторг. Ньютон шел от геометрических доказательств к обобщенным результатам, не приводя алгебраические манипуляции. В тексте он признал, что в таком виде метод легче представлять, но он все еще беспокоится, что доказательство его теории бесконечно малых величин достаточно шатко. Ньютон — не первый ученый, взявшийся за дифференцирование и интегрирование, но именно он впервые создал прочную конструкцию, в которой эти две операции были обратны друг другу. Своими бесконечными рядами он чрезвычайно расширил диапазон функций, с которыми теперь можно было работать.

А что такое эти флюксии? Скорости исчезающих приращений. А что такое эти самые исчезающие приращения? Они не есть ни конечные величины, ни величины бесконечно малые, но они и не нули. Разве мы не имеем права назвать их призраками исчезнувших величин?

1 ... 22 23 24 25 26 27 28 29 30 ... 50
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Вера Попова Вера Попова27 октябрь 01:40 Любовь у всех своя-разная,но всегда это слово ассоциируется с радостью,нежностью и счастьем!!! Всем добра!Автору СПАСИБО за добрую историю! Любовь приходит в сентябре - Ника Крылатая
  2. Вера Попова Вера Попова10 октябрь 15:04 Захватывает,понравилось, позитивно, рекомендую!Спасибо автору за хорошую историю! Подарочек - Салма Кальк
  3. Лиза Лиза04 октябрь 09:48 Роман просто супер давайте продолжение пожалуйста прочитаю обязательно Плакала я только когда Полина искала собаку Димы барса ♥️ Пожалуйста умаляю давайте еще !)) По осколкам твоего сердца - Анна Джейн
  4. yokoo yokoo18 сентябрь 09:09 это прекрасный дарк роман!^^ очень нравится #НенавистьЛюбовь. Книга вторая - Анна Джейн
Все комметарии: