Books-Lib.com » Читать книги » Домашняя » Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Читать книгу - "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос"

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос' автора Алекс Беллос прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

515 0 12:51, 25-05-2019
Автор:Алекс Беллос Жанр:Читать книги / Домашняя Год публикации:2012 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос", которую можно читать онлайн бесплатно без регистрации

Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!
1 ... 77 78 79 80 81 82 83 84 85 ... 103
Перейти на страницу:

Игроки в «Мега-Миллионс» должны выбрать пять чисел от 1 до 56 и одно от 1 до 46. Имеется около 175 миллионов возможных комбинаций. Как перечислить все эти комбинации таким образом, чтобы каждая из них встречалась только один раз, без дублирования? В начале 1960-х годов румынский математик Стефан Мандел задался этим вопросом относительно румынской лотереи, которая по масштабу гораздо меньше американских. Получить ответ оказалось совсем непросто. Мандел, однако, в конце концов решил задачу, правда потратив на нее несколько лет, и стал победителем в румынской лотерее 1964 года. (Он не скупил все комбинации, потому что это было бы слишком дорого, а применил вспомогательный метод, называемый «уплотнением», который гарантирует, что по крайней мере 5 из 6 чисел будут правильными. Обычно за угадывание 5 чисел полагается второй приз, но ему повезло, и он сразу же выиграл главный.) Записанный на бумаге алгоритм Мандела, позволяющий определить те комбинации, которые надо покупать, занял 8000 страниц. Вскоре после получения выигрыша он эмигрировал в Израиль, а затем в Австралию.

Уже в Мельбурне Мандел основал международный синдикат по лотерейным ставкам, собрав с его участников достаточно денег для того, чтобы при желании иметь возможность скупить все комбинации в лотерее. Он следил за проводимыми по всему миру лотереями с переходящими джекпотами, как минимум в три раза превышающими суммарную цену покупки всех комбинаций. В 1992 году в поле его зрения попала лотерея штата Виргиния, в которой было семь миллионов комбинаций, а каждый билет стоил 1 доллар, при том что джекпот достиг почти 28 миллионов долларов. Тогда Мандел принялся за дело. Он печатал купоны в Австралии, заполнял их на компьютере так, чтобы они охватили все семь миллионов комбинаций, а затем отправлял самолетом в Соединенные Штаты. И — получил главный приз, а заодно и 135 000 вторых призов!

Лотерея в Виргинии была самым большим из сорванных Манделом джекпотов, доведя счет его побед, одержанных после отъезда из Румынии, до 13. Служба внутренних доходов США (The U.S. Internal Revenue Service), ФБР, и ЦРУ проявили интерес к синдикату Мандела и попытались расследовать его методы участия в лотерее, но ничего противоправного эти уважаемые организации не нашли. Ведь нет ничего незаконного в том, чтобы скупить все комбинации, хотя это и слегка отдает аферой. Мандел в настоящее время отошел от дел, связанных с лотереями, и наслаждается жизнью на одном из тропических островов южной части Тихого океана[59].

* * *

Особенно выразительное и наглядное представление случайности изобрел в 1888 году Джон Венн (1834–1923). Венн, быть может, — наименее яркий из всех математиков, имя которых постоянно на слуху. Он был кембриджским профессором и англиканским клириком и провел большую часть жизни, занимаясь составлением сборника биографий 136 000 выпускников Кембриджа, получивших дипломы до 1900 года. Никаких революционных прорывов в своей науке он не совершил, но тем не менее разработал замечательный способ для объяснения логических рассуждений с помощью пересекающихся окружностей. Хотя в предшествующие столетия и Лейбниц, и Эйлер рассматривали нечто очень похожее, диаграммы были названы в честь Венна[60]. Гораздо меньше известно, что Венн придумал блестящий способ для иллюстрации случайности.

Представим себе точку, поставленную в центре белого листа бумаги. Из этой точки выходят восемь возможных направлений: на север, северо-восток, восток, юго-восток, юг, юго-запад, запад и северо-запад. Припишем этим направлениям числа от 0 до 7. Случайным образом выберем число от 0 до 7 и проведем отрезок прямой в направлении, отвечающем полученному числу. Будем делать так снова и снова, в результате чего на бумаге появится некая кривая. Венн проделал такое для самой непредсказуемой из известных ему числовых последовательностей — десятичного разложения числа π (откуда исключил восьмерки и девятки)[61]. Результат, писал он, представлял собой «очень правильное наглядное представление случайности».

Построенный Венном чертеж стал, по-видимому, самой первой диаграммой «случайного блуждания». То же самое нередко называют «блужданием пьяницы», апеллируя к более выразительной картинке, на которой вместо исходной точки — фонарный столб, а вместо числа π — человек в состоянии сильного опьянения, совершающий неуверенные движения. Один из самых очевидных вопросов, которые здесь напрашиваются, — насколько далеко пьяница сумеет отойти от столба, пока еще стоит на ногах? В среднем, чем дольше он будет блуждать, тем дальше от столба окажется. Выяснилось, что расстояние между пьяницей и фонарем растет как квадратный корень из времени прогулки. Итак, если за один час наш пьянчужка в среднем проходит один квартал, то, если дать ему четыре часа, он пройдет два квартала, а через девять часов — три.

Во время своего случайного блуждания наш подвыпивший герой будет иногда ходить кругами, повторяя собственные шаги. Какова вероятность, что он в конце концов снова набредет на фонарный столб? Как ни странно, ответ таков: 100 процентов! Он может блуждать годами в самых отдаленных уголках, но будьте уверены — если дать ему достаточно времени, он в конце концов обязательно вернется в исходную точку.

Представим себе, что пьяница блуждает в трех измерениях. Назовем это «полетом одурелого шмеля». Шмель стартует из некоторой точки в трехмерном пространстве и летит в случайном направлении на фиксированное расстояние по прямой. Затем он останавливается, переводит дух и снова, жужжа, срывается с места в другом случайном направлении, пролетая то же самое расстояние. И так далее. Какова вероятность, что в конце концов он вернется в точку своего старта? Ответ: всего 0,34, то есть около трети. Не правда ли, довольно странно, что в двух измерениях возвращение пьяницы к фонарному столбу представляло собой абсолютную определенность, но еще более странно то, что шмель, жужжащий в воздухе неограниченно долго, с высокой вероятностью никогда не вернется домой.

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Первый в мире пример случайного блуждания. Из книги Джона Венна «Логика шанса» (1866). Траектория задается цифрами из разложения числа π, начиная с 1415


Главный герой романа-бестселлера Люка Рейнхарта «Дайсмен» («Человек — Игральная кость») принимает жизненно важные решения, бросая игральную кость. Представим себе «Человека-монету», который принимает решения, подбрасывая монету. Если, скажем, у него выпадает орел, он передвигается на один шаг вверх по странице, а если решка — то вниз. Путь нашего Человека-монеты подобен блужданиям уже знакомого нам пьяницы, но в одном измерении, ведь он может смещаться только вдоль одной и той же прямой. Изобразим на графике случайные блуждания, описываемые вторым из двух отчетов о 30 бросаниях монеты, приведенных ранее. Получается вот что:

1 ... 77 78 79 80 81 82 83 84 85 ... 103
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: