Books-Lib.com » Читать книги » Домашняя » Время переменных. Математический анализ в безумном мире - Бен Орлин

Читать книгу - "Время переменных. Математический анализ в безумном мире - Бен Орлин"

Время переменных. Математический анализ в безумном мире - Бен Орлин - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Время переменных. Математический анализ в безумном мире - Бен Орлин' автора Бен Орлин прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

191 0 08:00, 26-09-2021
Автор:Бен Орлин Жанр:Читать книги / Домашняя Год публикации:2021 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0
Купить книгу

Аннотация к книге "Время переменных. Математический анализ в безумном мире - Бен Орлин", которую можно читать онлайн бесплатно без регистрации

«Время переменных» – веселая книга о математике вокруг нас. Двадцать восемь увлекательных рассказов, посвященных разным аспектам математики, сопровождаются забавными авторскими рисунками. Математический анализ для Орлина – это универсальный язык, способный выразить все, с чем мы сталкиваемся каждый день, – любовь, риск, время и, самое главное, постоянные изменения.Тема движения времени находит отражение и в названиях частей книги – «Мгновения» и «Вечности», и в ее персонажах – от Шерлока Холмса до Марка Твена и Дэвида Фостера Уоллеса. C присущими ему юмором и изобретательностью Орлин выявляет связи между матанализом, искусством, литературой и любимой собакой по имени Элвис.Автор нашумевшей «Математики с дурацкими рисунками» и в этой книге ставит своей целью не просто увлечь читателя любимым предметом, но сделать нас более мудрыми и вдумчивыми.
1 2 3 4 5 6 7 8 9 10
Перейти на страницу:
Ознакомительный фрагмент

И никто в истории не изобретал символов, обладающих той же наглядной ясностью, как нововведения Готфрида Лейбница. «Подозреваю, что своими успехами в математике, – размышляет специалист в области информационных технологий Стивен Вольфрам, – Лейбниц в значительной степени обязан тому, что вложил немало сил в систему обозначений».

Родившийся в 1646 г., всего через несколько лет после Ньютона, «сооснователя» математического анализа, Лейбниц проявил себя в самых разнообразных областях. Философ, человек, ведущий светский образ жизни, и, как показывают портреты, обладающий головой, на которую возлагались гигантские парики, он мог бы включить «изобретение математического анализа» всего лишь одной строкой в свое резюме. Он был самым известным в Европе специалистом по геологии, Китаю, сложным юридическим вопросам, то есть, если говорить обобщенно, самым известным специалистом в Европе. Один королевский заказчик с тяжелым вздохом называл Лейбница «мой живой словарь». За свою жизнь ученый написал 15 000 писем более чем 1000 корреспондентов.


Время переменных. Математический анализ в безумном мире

Лейбниц заботился о своих читателях. В отличие от Ньютона, который намеренно написал «Начала» тяжелым стилем («дабы избежать нападок дилетантов от математики»), Лейбниц ценил комфортное общение. Поэтому, разрабатывая понятия математического анализа, он озаботился тем, чтобы снабдить их ясными и подходящими символами.

Такими символами, как d.


Время переменных. Математический анализ в безумном мире

В математике Δ (греческая буква «дельта») обозначает изменение. Возьмем достойный заголовков газет пример, который имел место этим утром и о котором шесть месяцев назад вы не могли услышать: я вышел на пробежку.

Если принять за х пройденное мной расстояние, то Δх – это изменение расстояния за определенный промежуток времени. Скажем, 26 км (поскольку это моя книга, я могу и солгать, если мне этого захочется).

Теперь, если t – это время, то Δt – время, затраченное на пробежку. Пусть это будет два часа (потому что это упрощает расчеты, а не для того, чтобы я показался скоростным монстром).

Какой была моя скорость? Ну, для того чтобы рассчитать величину изменений, мы делим. Δх разделить на Δt, это дает 13 км/ч.


Время переменных. Математический анализ в безумном мире

А теперь что насчет моей скорости ровно в час дня? Производная, как вы, возможно, помните, – это мгновенная величина изменения. Она не анализирует неторопливый интервал времени – два часа. Она показывает единственный момент, стоп-кадр.

Но тут возникает проблема. За этот бесконечно малый промежуток времени никакого времени не прошло и я не покрыл никакого расстояния. Δх и Δt равны нулю. А 0/0 дает не слишком иллюстративный ответ.

Возьмем видоизмененные обозначения Лейбница. Вместо Δх и Δt рассмотрим dx и dt – бесконечно малые приращения положения и времени.

Исходя из этого, производная у Лейбница будет обозначаться dx/dt.


Время переменных. Математический анализ в безумном мире

Здесь есть одна уловка: dx и dt не являются реальными числами, и по-настоящему вы не можете делить их. Запись не является буквальной, она, скорее, напоминает аналогию или магический пасс рукой. Но именно это делает символизм таким мощным. Гарвардский математик Барри Мазур сравнивает производную Лейбница с пиктографическим алфавитом китайского или японского: не просто произвольно выбранный знак, но крошечная выразительная иллюстрация сущности понятия. Мазур относит ее к своим «любимым частям математической терминологии» именно по этой причине: она «визуально объясняет саму себя».

Я должен признаться. Студентом я предпочитал обозначения, на которые повлияли работы Ньютона (с которыми мы имели дело в главе III). Для меня все это дело с dx/dt выглядело громоздким, сложным и, что хуже всего, словно содержащим в себе мину-ловушку: дробь, которая в действительности не является дробью.

Но со временем я сумел оценить тайную мощь d Лейбница – ее огромную гибкость. Тогда как производные предполагают единственную переменную на входе (часто – это время), символика Лейбница простирается гораздо шире. Она позволяет нам выстроить огромное количество классов переменных в сложном «балетном» порядке.

Чтобы увидеть это, давайте зайдем в класс, где идет урок экономики. Или, еще лучше, в конференц-зал компании, производящей игрушки.

Мы с вами делаем плюшевых мишек, продаем определенное количество (q) по определенной цене (p). Что случится, если мы незначительно повысим цену? В целом мы продадим меньше мишек, но точный ответ дает производная dq/dp. Она показывает текущий показатель изменения количества с учетом цены.


Время переменных. Математический анализ в безумном мире

Тем не менее q зависит не только от p. Возможно, мы занимаемся рекламой и вкладываем а долларов в телевизионные ролики. В этом случае dq/da выражает незначительное влияние, которое каждый дополнительный доллар, вложенный в рекламу, оказывает на продажи.


Время переменных. Математический анализ в безумном мире

И опять же, если мы даем больше рекламы, возможно, нам понадобится поднять цену. Это означает еще раз рассмотреть dp/da: как цена, которую мы назначаем, зависит от рекламного бюджета.


Время переменных. Математический анализ в безумном мире

Мы даже можем перевернуть наши производные с ног на голову. Что насчет dp/dq? Это соотношение укажет нам на то, как цена отреагирует на бесконечно малое изменение количества.


Время переменных. Математический анализ в безумном мире

1 2 3 4 5 6 7 8 9 10
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: