Books-Lib.com » Читать книги » Домашняя » Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных - Дэвид Хэнд

Читать книгу - "Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных - Дэвид Хэнд"

Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных - Дэвид Хэнд - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных - Дэвид Хэнд' автора Дэвид Хэнд прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

225 0 09:06, 11-04-2022
Автор:Дэвид Хэнд Жанр:Читать книги / Домашняя Год публикации:2021 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0
Купить книгу

Аннотация к книге "Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных - Дэвид Хэнд", которую можно читать онлайн бесплатно без регистрации

Человечество научилось собирать, обрабатывать и использовать в науке, бизнесе и повседневной жизни огромные массивы данных. Но что делать с данными, которых у нас нет? Допустимо ли игнорировать то, чего мы не замечаем? Британский статистик Дэвид Хэнд считает, что это по меньшей мере недальновидно, а порой – крайне опасно. В своей книге он выделяет 15 влияющих на наши решения и действия видов данных, которые остаются в тени. Например, речь идет об учете сигналов бедствия, которые могли бы подать жители бедных районов, если бы у них были смартфоны, результатах медицинского исследования, которые намеренно утаили или случайно исказили, или данных, ставших «темными» из-за плохого набора критериев для включения в выборку. Хэнд также рассказывает о том, какие меры могут сгладить эффект «темных данных» и как их можно обратить себе на пользу. Книга будет интересна широкому кругу читателей, интересующихся дата-сайенс, программированием и статистикой.
1 ... 3 4 5 6 7 8 9 10 11 12
Перейти на страницу:
Ознакомительный фрагмент

В 2007 г. бутылка из партии 1852 г. была выставлена на аукционе eBay со стартовой ценой $299. Продавец, у которого она хранилась в течение 50 лет, неправильно написал название пива, пропустив одну «р» в слове «Allsopp». Как следствие, предмет не обнаруживался поисковыми запросами любителей винтажного пива, так что поступило только две заявки. Из них победила заявка 25-летнего Даниэля Вудула, который предложил целых $304. Стремясь определить ценность покупки, Вудул тут же вновь выставил бутылку на продажу, но на этот раз с правильным названием. В ответ было подано 157 заявок с максимально предложенной ценой $503 300.

В этом случае одна пропущенная буква стоила полмиллиона долларов[11]. Это наглядный пример того, что потеря информации может привести к значительным последствиям. Как мы увидим далее, полмиллиона долларов – ничто по сравнению с убытками в других ситуациях, связанных с отсутствием данных. Они способны разрушать судьбы, уничтожать компании и, как в случае с Challenger, приводить к гибели людей. Короче говоря, отсутствующие данные важны.

В случае с Arctic Ale чуть большее внимание помогло бы избежать проблемы. Небрежность, безусловно, одна из самых распространенных причин появления темных данных, но далеко не единственная. Неприятный факт заключается в том, что данные могут стать темными по очень широкому ряду причин, и далее в книге мы увидим это.

Заманчиво считать темные данные исключительно тем, что можно было бы получить, но по каким-то причинам не удалось. Безусловно, это самый очевидный вид темных данных. Отсутствующие данные по заработной плате в опросе, в котором часть респондентов отказалась разглашать эту информацию, конечно, являются темными данными, но также ими является и уровень заработной платы безработных, которые не получают ее и, следовательно, просто не могут назвать. Ошибки измерения и неточности скрывают истинные значения; обобщая данные (например, вычисляя средние значения), мы теряем детали; неверные формулировки запросов искажают смысл того, что мы хотим узнать. В более общем понимании любую неизвестную характеристику некоей генеральной совокупности (статистики часто используют термин «параметр») можно рассматривать как темные данные.

Поскольку число возможных причин возникновения темных данных, по сути, не ограничено, знание того, на что следует обращать внимание, является чрезвычайно важным для предотвращения ошибок и просчетов. Именно с этой целью в нашей книге и представлено описание DD-типов. Они не охватывают все возможные причины (например, небрежность, допускающую включение в окончательный результат исследования данных пациентов, которые наблюдались недостаточно длительное время), но обеспечивают более общую систематику (например, проводят различие между данными, о которых мы знаем, что они отсутствуют, и данными, о которых мы этого не знаем). Понимание этих DD-типов может помочь вам защититься от ошибок, оплошностей и угроз, вытекающих из самого факта незнания. В этой книге представлены, а в главе 10 обобщены следующие DD-типы:

● DD-тип 1: данные, о которых мы знаем, что они отсутствуют;

● DD-тип 2: данные, о которых мы не знаем, что они отсутствуют;

● DD-тип 3: выборочные факты;

● DD-тип 4: самоотбор;

● DD-тип 5: неизвестный определяющий фактор;

● DD-тип 6: данные, которые могли бы существовать;

● DD-тип 7: данные, меняющиеся со временем;

● DD-тип 8: неверно определяемые данные;

● DD-тип 9: обобщение данных;

● DD-тип 10: ошибки измерения и неопределенность;

● DD-тип 11: искажения обратной связи и уловки;

● DD-тип 12: информационная асимметрия;

● DD-тип 13: намеренно затемненные данные;

● DD-тип 14: фальшивые и синтетические данные;

● DD-тип 15: экстраполяция за пределы ваших данных.

Глава 2
Обнаружение темных данных
Что мы собираем, а что нет
Темные данные со всех сторон

Данные не возникают сами собой. Они не существуют с начала времен, ожидая, пока их проанализируют. Кто-то должен собрать их. И разные методы сбора данных, как вы догадываетесь, порождают разные типы темных данных.

В этой главе мы рассмотрим три основных метода создания наборов данных, а также пути возникновения темных данных, связанные с каждым из них. Следующая глава посвящена дополнительным осложнениям, которые темные данные могут вызывать в разных ситуациях.

Итак, вот три основные стратегии создания наборов данных.

● Сбор данных обо всех интересующих нас объектах.

Именно к этому стремятся, например, во время переписи населения. Точно так же инвентаризации преследуют цель максимально детализировать все позиции на складе или в любом другом месте. В 2018 г. ежегодная инвентаризация в лондонском зоопарке, которая занимает около недели, показала, что в данной организации насчитывается 19 289 животных – от филиппинских крокодилов до беличьих обезьян, пингвинов Гумбольдта и двугорбых верблюдов (в случае муравьев, пчел и других социальных насекомых подсчитывались колонии). В главе 1 мы уже отмечали, что супермаркеты собирают данные обо всех покупках. То же самое касается налогов, операций по кредитным картам и персонала. Не менее подробно регистрируются спортивная статистика, книги на полках библиотек, цены в магазинах и многое другое. Во всех этих примерах каждая единица – будь то объект или человек – детализируется для формирования набора данных.

● Сбор данных о некоторых элементах совокупности.

Альтернативой полной переписи населения является сбор данных в рамках ограниченной выборки. Репрезентативная выборка крайне важна в нашем контексте, и мы подробно рассмотрим ее взаимосвязь с проблемой темных данных. Проще говоря, порой приходится собирать только те данные, которые легче собрать. Чтобы понять, как ведут себя покупатели в принципе, вы можете понаблюдать за теми, кто пришел в магазин сегодня. Для того чтобы узнать, сколько времени у вас отнимает дорога до работы, вы можете просто ежедневно на протяжении месяца следить за продолжительностью поездки. Бывают ситуации, когда просто не нужно измерять все: чтобы увидеть динамику изменения цен на продукты питания, вам не нужна информация о каждой покупке, а для определения среднего веса песчинки ни к чему взвешивать каждую из них. В главе 1 мы уже видели, что само понятие «измерение всего» может быть лишено смысла. Полнота данных, например о вашем росте, будет ограничена только теми измерениями, которые вы проведете.

1 ... 3 4 5 6 7 8 9 10 11 12
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: