Books-Lib.com » Читать книги » Домашняя » Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац

Читать книгу - "Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац"

Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац' автора Стивен Строгац прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

278 0 10:00, 09-06-2021
Автор:Стивен Строгац Жанр:Читать книги / Домашняя Год публикации:2021 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0
Купить книгу

Аннотация к книге "Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац", которую можно читать онлайн бесплатно без регистрации

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.На русском языке публикуется впервые.
1 ... 3 4 5 6 7 8 9 10 11 ... 15
Перейти на страницу:
Ознакомительный фрагмент

Но всегда – даже когда геометрия была зациклена на прямых линиях – выделялась одна кривая, самая совершенная из всех: окружность. Мы видим ее в годичных кольцах деревьев, в волнах на пруду, в форме солнца и луны. В природе круги повсюду. Когда мы смотрим на них, они смотрят на нас – в буквальном смысле, ведь они в глазах наших близких, в зрачках и радужках. Круги и практичны, и эмоциональны, как колеса и обручальные кольца; в них есть нечто мистическое. Вечное возвращение предполагает цикл времен года, возрождения, вечной жизни и нескончаемой любви. Неудивительно, что круги привлекали внимание с тех пор, как люди стали изучать формы.

С математической точки зрения окружности воплощают изменения без изменений. Точка, двигающаяся по окружности, меняет направление движения, не меняя при этом своего расстояния от центра. Это минимальная форма изменений – самый простой способ двигаться по кривой. И, конечно же, окружность симметрична. Если вы повернете ее вокруг центра, она будет выглядеть точно так же. Такая поворотная симметрия может быть причиной распространенности этих фигур. Везде, где природу не беспокоит направление, обязательно появляются окружности. Посмотрите, что происходит, когда дождевая капля попадает в лужу: от точки удара расходятся мелкие волны. Они обязаны иметь круговую форму, потому что двигаются с одинаковой скоростью во всех направлениях и начинаются в одной точке. Этого требует симметрия.

Окружности могут также порождать другие искривленные формы. Если представить, что окружность проткнули по диаметру и стали вращать вокруг этой оси в трехмерном пространстве, то получится сфера – форма мяча или планеты. Если окружность двигать по прямой перпендикулярно ее плоскости, появляется цилиндр – форма банки или коробки для шляп. Если окружность одновременно с поступательным движением сжимается, образуется конус, если расширяется – то усеченный конус (форма абажура).


Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Окружности, сферы, цилиндры и конусы очаровывали первых геометров, но при этом они считали, что работать с ними гораздо труднее, чем с треугольниками, прямоугольниками, квадратами, кубами и прочими прямолинейными формами, составленными из кусков прямых линий и плоскостей. Ученых интересовали площади криволинейных поверхностей и объемы криволинейных тел, но они понятия не имели, как решать такие задачи. Криволинейность была сильнее.

Бесконечность как строитель моста

Анализ начинался как отрасль геометрии[28]. Примерно в 250 году до нашей эры в Древней Греции вплотную занялись разгадкой кривых. Амбициозный план состоял в использовании бесконечности для построения моста между кривыми и прямыми. Приверженцы плана надеялись, что как только такая связь будет установлена, методы и техники прямолинейной геометрии можно будет перетащить через этот мост и применить для решения загадки кривых. Бесконечность поможет решить все старые задачи. По крайней мере, таков был настрой.

Должно быть, в то время такой план выглядел довольно надуманным. У бесконечности была сомнительная репутация – будто бы это нечто пугающее, а не полезное. Что еще хуже, само понятие бесконечности было весьма туманно и сбивало с толку. Что это вообще такое? Число? Место? Идея?

Тем не менее, как мы вскоре увидим, бесконечность оказалась манной небесной. Если учесть все открытия и технологии, которые в итоге выросли из анализа, то идея использовать бесконечность для решения трудных геометрических задач была одной из лучших в истории.

Конечно, в 250 году до нашей эры предвидеть это было невозможно. Тем не менее бесконечность тут же дала несколько впечатляющих результатов. Одним из первых и лучших стало решение давней загадки: как найти площадь круга[29].


Доказательство с помощью пиццы

Перед тем как вдаваться в подробности, давайте набросаем ход рассуждений. Наша стратегия – представить круг в виде пиццы, а затем нарезать ее на бесконечное множество кусочков и волшебным образом переложить их так, чтобы получился прямоугольник. Это даст нам ответ, который мы ищем, поскольку перекладывание кусочков, очевидно, не меняет их площадь, а находить площадь прямоугольника мы умеем: нужно умножить его длину на ширину. Результатом будет формула для площади круга.

Для такого рассуждения пицца должна быть идеализированной математической пиццей – идеально плоской и круглой, с бесконечно тонкой корочкой. Обозначим буквой С ее периметр (или длину окружности) – расстояние вдоль границы. Длина окружности – вовсе не то, что обычно интересует любителей пиццы, однако при желании мы могли бы измерить величину C с помощью рулетки.


Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Еще одна необходимая величина – радиус пиццы r, который определяется как расстояние от ее центра до любой точки корочки. В частности, если мы нарежем пиццу на ломтики, проводя разрезы от центра к краям, то длина прямого отрезка в таких ломтиках будет равна r.


Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Предположим, что мы разделили пиццу на четыре части. Их можно переложить следующим способом, но он не выглядит слишком многообещающим.


Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Получившаяся фигура с выступами вверху и внизу смотрится несколько странно. Это явно не прямоугольник, и определить ее площадь непросто. Похоже, нам придется отступить. Но, как и в любой драме, герою перед триумфом предстоит преодолеть трудности. Драматическое напряжение нарастает.

Однако раз уж мы тут застряли, то отметим две вещи, потому что они будут справедливы в ходе всего доказательства и в итоге дадут нам размеры искомого прямоугольника. Первая – одна половина корочки стала искривленной верхней границей новой фигуры, а вторая – нижней частью. Поэтому длина верхней границы равна C/2 и нижней границы – тоже C/2, как изображено на рисунке. Как мы увидим, в итоге эти границы превратятся в длинные стороны прямоугольника. Вторая – длина всех наклонных боковых сторон получившейся фигуры равна r, потому что это просто стороны исходных ломтиков пиццы. Эти боковые отрезки в итоге превратятся в короткие стороны прямоугольника.

1 ... 3 4 5 6 7 8 9 10 11 ... 15
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Алла Гость Алла10 август 14:46 Мне очень понравилась эта книга, когда я её читала в первый раз. А во второй понравилась еще больше. Чувствую,что буду читать и перечитывать периодически.Спасибо автору Выбор без права выбора - Ольга Смирнова
  2. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  3. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  4. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
Все комметарии: