Books-Lib.com » Читать книги » Домашняя » Умные граждане – умное государство - Бет Новек

Читать книгу - "Умные граждане – умное государство - Бет Новек"

Умные граждане – умное государство - Бет Новек - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Умные граждане – умное государство - Бет Новек' автора Бет Новек прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

317 0 13:24, 21-05-2019
Автор:Бет Новек Жанр:Читать книги / Домашняя Год публикации:2016 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
00

Аннотация к книге "Умные граждане – умное государство - Бет Новек", которую можно читать онлайн бесплатно без регистрации

«Граждане – это всего лишь зрители сложнейших процессов государственного управления. Они могут выражать мнение, основанное на ценностях, но не на знании научных фактов. Отсутствие когнитивных способностей, незаинтересованность в политике и добровольная зависимость от всесильного государства мешают людям активно и продуктивно участвовать в общественной жизни.Подобное отношение к политической зрелости граждан довольно широко распространено. Именно поэтому пока еще участие общества в политических процессах сводится к выяснению точки зрения людей через выборы, опросы общественного мнения или с помощью социальных медиа. При этом, однако, никто не спрашивает граждан о том, что они знают.Однако сегодня появились такие онлайн-инструменты коллективного участия, как краудсорсинг. Благодаря им организации могут систематически получать разнообразную помощь и привлекать к решению проблем все больше представителей общественности. Люди хотят и готовы сообща искать ответы на вопросы, имеющие отношение к их жизни и опыту, что, с одной стороны, приводит к большей легитимности, а с другой, как ни удивительно, – к повышению эффективности принятия решений…»
1 ... 60 61 62 63 64 65 66 67 68 ... 128
Перейти на страницу:

Точно так же подписка на чью-то ленту в Twitter считается выражением интереса к этому человеку, даже если этот шаг мотивирован стремлением «держать врагов в поле зрения». Тот факт, что другие пользователи отслеживают сообщения человека, можно расценивать в качестве рекомендации, непосредственно говорящей о его статусе и компетенциях.

В подобных системах, где в основе рекомендаций лежат связи между участниками сообщества, статус каждого оценивается по статусу его контактов. Именно такой механизм применяется и в LinkedIn, где репутация пользователя строится на связях с другими профессионалами, отличающимися высокой репутацией и заметными достижениями.

Поскольку коммуникация в Twitter строится вокруг обсуждения конкретных тем, подписка друг на друга может отражать не только связи между людьми, но и выводить на некоторую профессиональную область, в которой они компетентны. С большой долей уверенности можно предположить, что в таких системах готовность открыто демонстрировать личный контакт свидетельствует о положительном прошлом опыте общения и в некотором смысле служит гарантией соответствующей профессиональной компетенции. Из-за относительной технической простоты измерения количества твитов, ретвитов и лайков, числа подписчиков и комментариев, рейтингов, баллов и других показателей одобрения в социальных сетях, зачастую эти платформы становятся идеальной, гибкой тестовой площадкой новых инструментов для поиска людей, обладающих знаниями в определенных областях[526].

Интенсивность цитирования и рекомендации

Измерить взаимоотношения можно также через механизм цитирования – отдельный вид связи между узлами в сети – подобный тому, который мы упоминали, описывая сервисы «Академии Google». Уровень влияния пользователя может определяться количеством ретвитов его сообщения и ссылок на его пост, числом упоминаний в социальных медиа и интенсивностью репостов. Такой способ оценки влияния привел к появлению метода анализа тональности текста[527], который начали активно использовать специалисты по работе с социальными медиа, выводя с его помощью закономерности во взаимоотношениях между участниками сети. Анализ тональности текстов, социальные фильтры и другие подобные стратегии применяются к таким данным, как цитаты, твиты и биографическая информация, помогая обеспечить более эффективный поиск специалистов.

Профессиональная компетенция может измеряться и тем, сколько людей увидели, прочитали и не только процитировали, а скачали научную статью конкретного пользователя, что, как правило, происходит гораздо реже.

Профессиональная социальная сеть для ученых academia.edu в качестве основного библиометрического показателя[528] использует число просмотров страниц пользователей. В другой, сходной по задачам, сети SSRN, объединяющей специалистов по социальным наукам, таким показателем является число скачиваний: исследователи самостоятельно загружают работы в сеть и открывают к ним доступ. Приглашая на работу ученых, работодатели ориентируются на информацию об индексе цитирования, числе просмотров страниц и количестве скачиваний научных работ и формируют представление об уровне профессиональной компетенции и статусе каждого из кандидатов.

Все эти техники обработки и анализа данных являются вариантами решения одной-единственной задачи: определить и измерить профессиональные компетенции человека, исходя из уровня его сетевой социализации. Источником рекомендаций могут стать люди, хорошо знакомые пользователю, или те, с которыми он сталкивался по работе.

Мы оцениваем звездочками или баллами книги на сайте Amazon и фильмы на сайте Netflix; точно такой же принцип оценки применим и в отношении людей[529]. Системы, опирающиеся на лояльность пользователей, запрашивающие мнение пользователя о работе врача или любого другого специалиста или сервиса, зачастую предлагают самый влиятельный метод оценки профессиональной компетенции и эффективности[530].

В основе некоторых рекомендательных сервисов лежат личные отношения, и рекомендация становится следствием глубокого знания навыков человека, его способностей и опыта взаимодействия – так коллеги могут рекомендовать друг друга в LinkedIn. Прочные межличностные связи считаются основным инструментом влияния на социальное поведение людей – как онлайн, так и в реальном мире[531].

Конечно, системы рекомендаций появились задолго до эпохи интернета. Работодатели и администрации университетов всегда запрашивали рекомендации для того, чтобы подтвердить профессиональную компетенцию потенциального кандидата. Любые формы «старых связей» основываются на знакомстве и взаимной поддержке. Подобные рекомендательные системы не обязательно подразумевают кумовство. Скорее, те, кто владеет знаниями в определенной области, вероятнее всего знают других людей, занятых в той же области. Иными словами, высококлассный хирург-кардиолог, скорее всего, будет знаком с другими профессионалами в области сердечнососудистой хирургии, в то время как поклонник джаза будет знаком с теми, кто разделяет его любовь к этому музыкальному направлению.

Американский экономист и специалист в области инновационной деятельность Эрик фон Хиппель вместе с группой коллег смогли эмпирически проверить гипотезу о том, что люди, обладающие определенным уровнем знаний в какой-то области, могут назвать людей с более обширным опытом в этой области, чем у них самих. Этот принцип получил условное название «принцип пирамиды» или «эффект снежного кома»[532]. В ходе эксперимента одного из известных экспертов просили назвать тех людей, которые знакомы с темой лучше него, затем этот вопрос задавали всем, кого назвал эксперт, и так далее. Оказалось, что построение таких пирамид является отличным способом найти людей, обладающих редкими узкоспециализированными знаниями в обширной, но плохо структурированной области знаний[533]. Современные технологии связанных данных ускоряют процесс получения рекомендаций, а сами рекомендации трансформируются в объективную метрику, построенную на основе количественных показателей[534].

1 ... 60 61 62 63 64 65 66 67 68 ... 128
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Илья Илья12 январь 15:30 Книга прекрасная особенно потому что Ее дали в полном виде а не в отрывке Горький пепел - Ирина Котова
  2. Гость Алексей Гость Алексей04 январь 19:45 По фрагменту нечего комментировать. Бригадный генерал. Плацдарм для одиночки - Макс Глебов
  3. Гость галина Гость галина01 январь 18:22 Очень интересная книга. Читаю с удовольствием, не отрываясь. Спасибо! А где продолжение? Интересно же знать, а что дальше? Чужой мир 3. Игры с хищниками - Альбер Торш
  4. Олена кам Олена кам22 декабрь 06:54 Слушаю по порядку эту серию книг про Дашу Васильеву. Мне очень нравится. Но вот уже третий день захожу, нажимаю на треугольник и ничего не происходит. Не включается Донцова Дарья - Дантисты тоже плачут
Все комметарии: