Читать книгу - "Универсум. Общая теория управления - Владислав Масликов"
Аннотация к книге "Универсум. Общая теория управления - Владислав Масликов", которую можно читать онлайн бесплатно без регистрации
а) непосредственное; б) опосредованное 1-го типа; в) опосредованное 2-го типа; г) предикционное (3-го типа); д) системы искусственного интеллекта
Примеры непосредственного наблюдения – определение факта восхода солнца, роста растений, распространения волн на водной поверхности. Традиционные примеры опосредованного наблюдения 1-го типа – использование простых приборов для количественного преобразования (усиления – ослабления амплитуд колебаний) наблюдаемых объектов (лупа, телескоп, светофильтр, зачернённое стекло и другие простые приборы различных конструкций). Примеры опосредованного наблюдения 2-го типа – использование приборов для некоторого качественного преобразования (например, перевода исследуемых колебаний в другие диапазоны частот) наблюдаемых объектов (компас, анализатор спектра, счётчик Гейгера и более сложные адаптивные системы). На этом классическая классификация видов наблюдений завершается. В универсумном описании этим видам используемых при исследованиях наблюдений соответствуют преимущественно материальные U-страты.
Что остаётся на долю преимущественно информационных U-страт?
Уровни предикции и прогноза относятся уже более к «исследованиям», «экспериментам», чем просто к простым «наблюдениям», это:
– предикционное исследование или опосредованное наблюдение 3-го типа, соответствующее проведению прямого (натурного) эксперимента, подразумевающего информационное исследование некой материальной модели объекта (рис. 5.4 г);
– интеллектуальное (прогнозное) исследование или опосредованное наблюдение 4-го типа, проводящееся с информационными моделями объектов (рис. 5.4д).
Пример предикционного исследования (наблюдения 3-го типа) – ручной расчёт параметров конструкций и систем по формулам; использование компьютерных вычислений для прогноза погоды и/или нахождения различных полезных ископаемых; автоматический запуск нужных программ работы на неуправляемых участках траектории дистанционных аппаратов. К этому классу также можно отнести, например, автоматическое всплытие глубоководного аппарата в случае повреждения линии связи, сброс накопленной информации при заходе спутника в определённые орбитальные зоны, включение дублирующих блоков в случае обнаружения неисправности и т. д.
Примеры интеллектуального исследования (наблюдений 4-го типа), способного описать и предсказать сложные, многофакторные явления и процессы, пока не поддающиеся всем предыдущим видам наблюдений-исследований можно будет привести только после создания систем искусственного интеллекта. Это может быть определение характеристик и создание внешнего облика ископаемых существ по геному, роботизированные системы само/обучения роботов, автономные исследовательские комические аппараты и т. п. сложные интеллектуальные суперсистемы.
Возвращаясь к современному состоянию дел с типологизацией схем и систем управления, подчеркнём, что в традиционных управленческих школах понятие «суперсистема» требует дальнейшего и существенного развития, а понятие «система, как элемент суперсистемы» практически отсутствует. Все школы оперируют в основном тремя интегративными схемами класса 4U и их дробными вариациями.
Рассмотрим работу этих схем более подробно, в качестве примера используя различные варианты конструкции ракетных комплексов боевого применения. В соответствии с приведённой универсумной классификацией они представляют три класса:
– программный интегрант;
– адаптацивный интегрант;
– предикционный интегрант.
Это разделение проведено по признаку полноты набора функций, которые возлагаются на интегрируемую в боевой комплекс ракету. В данном примере СУ (суперсистема) – боевой расчёт ракетной установки, ОУ (система) – запускаемая к цели ракета.
Ракета – программный интегрант (рис. 5.5а) выполняет только полёт к цели по заданной боевым расчётом траектории. Адаптацию траектории к внешним, например, погодным, условиям и предварительный расчёт траектории движения цели выполняет суперсистема «боевой расчёт».
Ракета – адаптивный интегрант (рис. 5.5б) кроме выполнения полёта к цели по заданной траектории способна адаптироваться к определённому спектру воздействий внешней среды, например, компенсировать отклонение от расчётной траектории, вызываемое порывами ветра. Суперсистеме «боевой расчёт» остаётся только «предугадать» возможный манёвр цели.
Ракета – предикционный интегрант (рис. 5.5в) в дополнение к программным и адаптационным функциям способна отслеживать изменения координат цели и производить регулярный предикционный перерасчёт траектории своего движения к цели. Боевому расчёту необходимо только определить начальные координаты цели и нажать кнопку «пуск».

Рис. 5.5. Интегративные принципы работы ракетных комплексов класса 4U
а) программный; б) адаптивный; в) предикционный
Конечно же, на практике возможны модификации ракетного комплекса с различными вариантами использования гироскопов, аналоговым и цифровым управлением, активными и пассивными боеголовками, возможностями перенацеливания и т. д., но базовая, универсумная классификация систем при этом останется неизменной.
Алгоритмика выработки управляющего решения при программном управлении (рис. 5.6) определяется теми простыми и жёсткими программами, которые представляют максимально материальные составляющие универсума.
Программная система ОУ, созданная внешней по отношению к ней суперсистемой СУ, учитывающей прошлый опыт поведения ОУ в заданных условиях, предусматривает отработку достаточно простого спектра внешних воздействий S. Все варианты S как цепь обратной связи (ОС) чаще всего учтены прямо в конструкции СУ: движущиеся в вязкой среде объекты имеют заострённую форму, конструкция ОУ должна выдерживать максимальные нагрузки сжатия-растяжения при изменении траектории, выдерживать определённый температурный режим и т. д. Можно сказать, что функции ОС, содержащей опыт прошлых событий, выполняет внешний по отношению к ОУ интеллект (СУ). Цепь прямой связи (ПС) учитывает всю эту информацию при переводе ОУ в рабочий режим.
Таким образом, работа программной схемы, размещённой в ракете, (рис. 5.7) в настоящем времени (точка Н на оси времени) подчиняется жёсткому алгоритму, составленному внешним по отношению к ней интеллектом, собравшим и проанализировавшим определённый опыт прошлых (точка П) событий. Прогноз поведения ракеты R с учётом прошлого опыта (П) осуществляет внешний интеллект (боевой расчёт), направляющий ракету на цель (S), который в настоящем времени (Н) выдаёт его в виде ПС – задания на поражение цели.
Ракета способна попасть в цель только в том случае, если в момент её пуска (Н) внешним по отношению к ней интеллектом заранее были учтены все необходимые условия, сопутствующие её полёту к цели. Если внешние условия при полёте ракеты соответствуют учтённым условиям прошлого опыта (П), то ракета имеет все шансы на достижение цели.
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев