Читать книгу - "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос"
Аннотация к книге "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос", которую можно читать онлайн бесплатно без регистрации
Слоун начал собирать свою коллекцию в 1963 году, когда учился на старших курсах Корнеллского университета. Сначала он записывал последовательности на карточках. Это было довольно удобно, поскольку при этом упорядоченные ряды сами образовывали некий упорядоченный ряд. К 1973 году он собрал 2400 последовательностей и опубликовал их в книге под заглавием «Энциклопедия целочисленных последовательностей». К середине 90-х годов у него их было уже 5500. Но только с изобретением Интернета коллекция обрела идеальную среду для своего существования. Список Слоуна расцвел и превратился в «Онлайн-энциклопедию целочисленных последовательностей» — собрание, в котором сейчас более 160 000 записей и которое разрастается со скоростью около 10 000 записей в год.
При первом знакомстве Слоун производит впечатление человека, никогда не покидающего своего домашнего кабинета. Однако это впечатление обманчиво. Слоун худощав, лыс и носит очки с толстыми квадратными стеклами, при этом он жилистый и плотный и предстает перед вами со всей своей дзен-осанкой, которая есть плод другого его увлечения — скалолазания. Слоуну нравится бросать вызов геологическим образованиям ничуть не меньше, чем покорять образования из чисел.
По мнению Слоуна, сходство между изучением последовательностей и скалолазанием состоит в том, что оба этих занятия требуют умения решать головоломки. Я бы добавил, что есть и другая параллель: подобно тому, как скалолаз, покорив одну вершину, уже готов сразиться с новой, так и любитель последовательностей, дойдя до n-го члена, тут же начинает искать (n + 1)-й. При этом у скалолазов есть естественный ограничитель — географический фактор, зато последовательности, уходя в бесконечность, часто никаких ограничений не имеют.
Как истинный коллекционер, который складывает в одну коробку своих старых любимцев рядом с колоритными раритетами, Слоун принимает в «Энциклопедию» как обыкновенное, так и экстравагантное. В его коллекции, например, имеется «нулевая последовательность», состоящая из одних только нулей. (Каждой последовательности в «Энциклопедии» присвоен идентификационный номер, перед которым стоит буква А. Нулевая последовательность — четвертая в собрании Слоуна, и потому известна как А4):
(А4) 0, 0, 0, 0, 0…
Будучи простейшей из возможных бесконечных последовательностей, она в то же время наименее динамичная в слоуновской коллекции, хотя и не лишена определенного нигилистического очарования.
Поддержание «Онлайн-Энциклопедии» — основная работа Слоуна, параллельная другой настоящей работе — занятию математикой в лабораториях компании AT&T в Нью-Джерси. Однако сейчас ему больше не нужно тратить время на поиски новых последовательностей. После того как к «Энциклопедии» пришел успех, Слоан постоянно получает новые — от профессиональных математиков, но по больше части от людей, одержимых числами. У Слоуна есть всего один критерий, на основе которого новой последовательности разрешается вступить в клуб: она должна быть «корректно определенной и интересной». Первое означает попросту, что каждый член в последовательности можно описать или алгебраически, или риторически. Удовлетворяет ли последовательность второму требованию — решает он сам, хотя обычно в случае сомнения он склонен решить вопрос скорее в пользу той или иной последовательности. Правда, из требований «корректной определенности» и «интересности» вовсе не следует, что последовательность обязательно должна быть математической. И история, и фольклор, и причуды также играют роль в его решении.
Среди последовательностей, включенных в «Энциклопедию», имеется и вот такая довольно древняя:
(А100000) 3, 6, 4, 8, 10, 5, 5, 7.
Числа в этой последовательности представляют собой перевод на язык цифр отметок, сделанных на самом старом из известных математических объектов — на кости Ишанго, артефакте возрастом 22 000 лет, найденном на территории нынешней Демократической Республики Конго[47]. Эта обезьянья кость сначала считалась инструментом для определения длины (попросту говоря, линейкой), однако потом ученые высказали идею, что поскольку насечки на кости хитро сгруппированы — тройка, ее удвоение, затем четверка, ее удвоение, десятка, за которой следует ее половина, — то эта последовательность может выражать какой-то более замысловатый ход мыслей, возможно связанный с выполнением арифметических действий.
В коллекции имеется также дьявольская последовательность:
(А51003) 666, 1666, 2666, 3666, 4666, 5666, 6660, 6661…
Она составлена из так называемых Чисел Зверя — чисел, содержащих фрагмент 666.
Ради забавы Слоун также включил и такую последовательность:
(А38674) 2, 2, 4, 4, 2, 6, 6, 2, 8, 8, 16.
Это числа из латиноамериканской детской песенки «La Farolera»: «Dos у dos son quatro, cuatro у dos son seis. Seis у dos son ocho, у ocho dieciseis» (Два и два — четыре, четыре и два — шесть, шесть и два — восемь и т. д.).
Но самая, быть может, классическая из всех последовательностей — это последовательность простых чисел:
(А40) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37…
Простые числа — это натуральные числа большие единицы, которые делятся только на себя и на единицу. Их очень просто описать, но их последовательность демонстрирует весьма впечатляющие, а временами и таинственные свойства. Во-первых, как доказал Евклид, простых чисел бесконечно много. Какое бы число вы ни взяли, всегда найдется простое число большее, чем данное. Во-вторых, каждое натуральное число больше 1 записывается — причем существует только один вариант — как произведение простых чисел. Другими словами, каждое число равно результату перемножения определенного набора простых чисел. Например, 221 есть 13 × 17. Следующее число, 222, есть 2 × 3 × 37. Идущее за ним — 223 — простое, так что можно записать только 1 × 223, а 224 есть 2 × 2 × 2 × 2 × 2 × 7. И так можно продолжать до бесконечности. Например, миллиард равен 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5. Это свойство чисел известно как фундаментальная теорема арифметики, и именно оно определяет, почему простые числа рассматриваются как неделимые кирпичики всей системы натуральных чисел.
Однако, несмотря на свою особенность, простые числа не обладают монополией на производство последовательностей, несущих в себе специальные секреты математического порядка (или беспорядка). Все последовательности так или иначе способствуют нашему лучшему пониманию того, как устроены числа. «Онлайн-энциклопедию целочисленных последовательностей» можно также рассматривать как собрание разнообразных примеров, справочное руководство по численному порядку, лежащему в основании мира. Возникнув из личного пристрастия Нила Слоуна, этот проект оказался действительно важным научным ресурсом.
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев