Читать книгу - "Экономика символического обмена - Александр Долгин"
Аннотация к книге "Экономика символического обмена - Александр Долгин", которую можно читать онлайн бесплатно без регистрации
2.7.1.1. Недостатки
Их в контентном методе несколько. Во-первых, машинный анализ годится не для всяких объектов. Так, сильно осложнена работа с мультимедийными приложениями, графикой, аудио- и видеоматериалами. (Хотя в последнее время в этой области наблюдается бурный прогресс.) Другая проблема данного метода в том, что два разных предмета, представленных одинаковыми профилями, неразличимы. В частности, с помощью контентных систем невозможно отличить хорошую статью от плохой, если их лексикон близок. Это касается и потребительских профилей, поэтому рекомендации, основанные на выборе якобы схожих людей, могут быть низкого качества. На деле оказывается, что профили близки, а люди, стоящие за ними, разные. Еще один очевидный недостаток – узость рекомендаций. Потребителю не могут рекомендовать товары, отличные от тех, которые ему уже знакомы. С другой стороны, ему могут настойчиво предлагать объекты, слишком похожие на те, что ему хорошо известны.
2.7.2. Вспомогательные системы
Эти системы не вычисляют рекомендации. Их смысл в другом: служить инструментом обмена рекомендациями. Первая в мире рекомендательная система Tapestry, разработанная в Xerox PARC, относилась к вспомогательному типу[327]. Популярные ныне веблоги (weblog) – пример такой системы.
Узкое место вспомогательных систем в том, что они эффективны только при наличии некоторого числа добровольцев, готовых генерировать информацию, полезную для сообщества[328]. В большинстве случаев эта работа не оплачивается, хотя вот-вот она превратится в статью дохода благодаря усилиям коммерческих поисковых сервисов[329]. Пока же рекомендателями движут немеркантильные интересы, возможно, потребность в расширении знаний или в выстраивании обратной связи с пользователями, или стремление обрести статус эксперта. Часто все, чего они ждут – это благодарность за разъяснение, советы или провокационные реакции.
2.7.3. Коллаборативные методы производства рекомендаций
Системы коллаборативной фильтрации основываются на двух принципах и, соответственно, бывают двух типов: анамнестические (memory-based) и модельные (model-based)[330].
Анамнестические алгоритмы строят прогноз, исходя из предшествующих оценок клиента [331] и совокупности оценок, данных товару другими пользователями. Это типичная поклиентская, или, иначе, субъект-субъектная схема коллаборативной фильтрации. Чтобы подсказки были точны, нужно решить две задачи: отфильтровать качественных рекомендателей и резюмировать их оценки. Вкусовая близость между клиентами устанавливается на основании того, какие оценки они дали одним и тем же товарам[332]. А вот вычисляться подобие может корреляционным методом (используется коэффициент корреляции Пирсона), методом линейного сходства, и рядом других способов. Простейший способ измерения сходства между пользователями – по среднеквадратичному отклонению.
Для улучшения работы системы используются различные модификации ранее описанных методов[333]. В частности, для преодоления дефицита оценок конкретного пользователя и подбора ему подходящих рекомендателей прибегают к «голосованию по умолчанию» (эта схема подходит в том случае, если все потребляют одно и то же и сходным образом оценивают). Эмпирически установлено, что точность предсказания растет, если присваивать неоцененным товарам некую гипотетическую оценку. Чтобы получить ее, предложено вычислять сходство не между пользователями, а между товарами[334].
Поскольку вкусы людей из группы рекомендателей, подобранных компьютерной программой для данного клиента, хотя и близки между собой, но все же не идентичны, нужно каким-то образом резюмировать их общую оценку. В примитивном варианте она вычисляется как простое среднее. В то же время ясно, что чем более сходны во вкусах клиент и кто-то из его рекомендателей, тем весомей должен быть вклад оценки данного рекомендателя в предсказание, обобщающее мнение группы. Однако и в этом варианте учтено не все: в частности, пользователи по-разному воспринимают шкалу оценок. Эта проблема снимается, если абсолютные значения оценок корректируются с учетом систематического сдвига от их среднего значения для соответствующего рекомендателя (так нивелируется общая позитивная или негативная установка абонента).
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Вера Попова27 октябрь 01:40
Любовь у всех своя-разная,но всегда это слово ассоциируется с радостью,нежностью и счастьем!!! Всем добра!Автору СПАСИБО за добрую историю!
Любовь приходит в сентябре - Ника Крылатая
-
Вера Попова10 октябрь 15:04
Захватывает,понравилось, позитивно, рекомендую!Спасибо автору за хорошую историю!
Подарочек - Салма Кальк
-
Лиза04 октябрь 09:48
Роман просто супер давайте продолжение пожалуйста прочитаю обязательно Плакала я только когда Полина искала собаку Димы барса ♥️ Пожалуйста умаляю давайте еще !))
По осколкам твоего сердца - Анна Джейн
-
yokoo18 сентябрь 09:09
это прекрасный дарк роман!^^ очень нравится
#НенавистьЛюбовь. Книга вторая - Анна Джейн


