Books-Lib.com » Читать книги » Домашняя » Наука о данных - Брендан Тирни

Читать книгу - "Наука о данных - Брендан Тирни"

Наука о данных - Брендан Тирни - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Наука о данных - Брендан Тирни' автора Брендан Тирни прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

267 0 10:02, 12-11-2021
Автор:Джон Келлехер Брендан Тирни Жанр:Читать книги / Домашняя Год публикации:2020 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0
Купить книгу

Аннотация к книге "Наука о данных - Брендан Тирни", которую можно читать онлайн бесплатно без регистрации

Сегодня наука о данных используется практически во всех сферах: вы видите подобранные специально для вас рекламные объявления, рекомендованные на основе ваших предпочтений фильмы и книги, ссылки на предполагаемых друзей в соцсетях, отфильтрованные письма в папке со спамом. Книга знакомит с основами науки о данных. В ней охватываются все ключевые аспекты, начиная с истории развития сбора и анализа данных и заканчивая этическими проблемами, связанными с конфиденциальностью информации. Авторы объясняют, как работают нейронные сети и машинное обучение, приводят примеры анализа бизнес-проблем и того, как их можно решить, рассказывают о сферах, на которые наука о данных окажет наибольшее влияние в будущем. «Наука о данных» уже переведена на японский, корейский и китайский языки.
1 2 3 4 5 6 7
Перейти на страницу:
Ознакомительный фрагмент

Использование науки о данных государственными структурами

В последние годы государственные структуры осознали преимущества науки о данных. Например, правительство США в 2015 г. назначило математика Дханурджая Патила первым главным специалистом по данным. Некоторые из крупнейших инициатив в области науки о данных, возглавляемых правительством, были связаны со здоровьем. Наука о данных лежит в основе проектов «Раковый прорыв» (Cancer Moonshot) и «Точная медицина» (Precision Medicine)[4]. «Точная медицина» сочетает секвенирование генома человека и науку о данных при разработке индивидуальных лекарств для отдельных пациентов. Одной из его частей является программа «Все мы» (All of Us)[5], которая занимается сбором информации об окружающей среде, образе жизни и биологических параметрах более миллиона добровольцев для создания крупнейших в мире баз данных точной медицины. Наука о данных радикальным образом меняет устройство городов, где она применяется для отслеживания, анализа и контроля экологических, энергетических и транспортных систем, а также при долгосрочном городском планировании{9}. Мы вернемся к здоровью и умным городам в главе 9, когда будем обсуждать перспективы науки о данных на ближайшие десятилетия.

Еще одна инициатива правительства США в области данных направлена на то, чтобы департаменты полиции лучше понимали, как они могут помочь местным сообществам[6]. Наука о данных также способствует прогнозированию очагов преступности и рецидивов преступлений, однако правозащитные группы подвергли критике ее использование в уголовном правосудии. В главе 7 мы обсудим вопросы конфиденциальности и этики, поднятые наукой о данных, и одним из факторов в этой дискуссии станет то, что многие люди имеют разное мнение о приватности информации, в зависимости от области, где она применяется. Если ее использование в медицинских исследованиях, финансируемых государством, находит поддержку, то реакция тех же людей меняется на противоположную, когда речь заходит о деятельности полиции и уголовном правосудии. В главе 7 мы также обсудим использование персональных данных для определения размера выплат при страховании жизни, здоровья, автомобиля, дома и путешествий.


Наука о данных

Наука о данных в профессиональном спорте

Фильм 2011 г. «Человек, который изменил все» с участием Брэда Питта продемонстрировал растущую роль науки о данных в современном спорте. Фильм основан на книге «Moneyball»[7] 2004 г., в которой рассказана реальная история о том, как бейсбольный клуб «Окленд Атлетикс» использовал науку о данных для улучшения отбора игроков{10}. С ее помощью было выявлено, что процентное соотношение попадания игрока на базу и упущенных возможностей является более информативным показателем его успешности, чем традиционно принятые в бейсболе статистические данные, такие как средний уровень достижений. Это понимание позволило составить список недооцененных игроков и превзойти возможности бюджета. Успех «Окленд Атлетикс» произвел революцию в бейсболе, и сегодня большинство клубов интегрирует аналогичные стратегии, основанные на данных, в процесс найма.

Эта история — яркий пример того, как наука о данных может дать организации преимущество в конкурентном рыночном пространстве. Но с точки зрения самой науки наиболее важным аспектом здесь является то, что иногда на первый план выходит выявление информативных атрибутов. Распространено мнение, что ценность науки о данных заключается в моделях, которые создаются в процессе. Однако, как только мы узнаем важные атрибуты области определения, можно легко создавать модели, управляемые данными. Ключом к успеху является получение правильных данных и поиск правильных атрибутов. В своей книге «Фрикономика»[8] Стивен Левитт и Стивен Дабнер иллюстрируют важность этого на примере широкого круга проблем, поскольку считают, что ключом к пониманию современной жизни является «знание того, что и как измерять»{11}. Используя науку о данных, мы можем выявить важные закономерности, которые, в свою очередь, помогут идентифицировать нужные атрибуты области определения. Причина, по которой наука о данных используется все шире, заключается в том, что сфера ее приложения не имеет значения: важны только правильные данные и четкая формулировка проблемы.

Почему сейчас?

Есть ряд факторов, способствующих росту науки о данных. Как мы уже говорили, появление больших данных обусловлено относительной легкостью, с которой организации могут собирать информацию. Записи транзакций в точках продаж, клики на онлайн-платформах, публикации в социальных сетях, приложения на смартфонах и прочее — все это каналы, через которые компании теперь могут создавать ценные профили отдельных клиентов. Другим фактором является коммодификация хранилищ данных с экономией на масштабе, что делает хранение информации дешевле, чем когда-либо прежде. На это влияет и колоссальный рост мощности компьютеров. Графические карты и процессоры (GPU) были изначально разработаны для быстрой визуализации графики в компьютерных играх. Отличительная особенность графических процессоров — способность выполнять быстрое умножение матриц, а это полезно не только для рендеринга графики, но и для машинного обучения. В последние годы графические процессоры были адаптированы и оптимизированы для использования в машинном обучении, что способствовало заметному ускорению обработки данных и обучения моделей. Также стали доступны удобные инструменты для обработки данных, которые снизили барьеры для доступа к ним. В совокупности это означает, что сбор, хранение и обработка данных никогда еще не были такими простыми.

За последние 10 лет появились более мощные модели машинного обучения, известные как глубокое обучение, которые произвели революцию в компьютерной обработке данных языка и изображений. Термин «глубокое обучение» описывает семейство моделей многослойных нейронных сетей. Нейронные сети существуют с 1940-х гг., но лучше всего они проявили себя с большими сложными наборами данных и мощными вычислительными ресурсами для обучения. Таким образом, появление глубокого обучения в последние несколько лет связано с ростом больших данных и вычислительной мощности. Тем не менее не будет преувеличением сказать, что влияние глубокого обучения на целый ряд областей исключительно. История AlphaGo[9] от DeepMind является отличным примером того, как глубокое обучение произвело революцию в области исследований. Го — настольная игра, созданная в Китае 3000 лет назад. Играть в го проще, чем в шахматы: игроки по очереди размещают фигуры на доске с целью захвата фигур противника или окружения пустой территории. Однако простота правил и тот факт, что в гo используется доска с бо́льшим числом клеточек, означают и большее число возможных конфигураций, нежели в шахматах. Число возможных конфигураций в го больше, чем число атомов во Вселенной, и это делает го гораздо более сложной игрой для компьютера, чем шахматы, в силу огромного пространства для поиска и сложности в оценке всех возможных конфигураций. Команда DeepMind использовала модели глубокого обучения, чтобы AlphaGo смогла оценивать конфигурации на доске и выбирать следующий ход. В результате AlphaGo стала первой компьютерной программой, которая победила профессионального игрока, а в марте 2016 г. она одержала победу над 18-кратным чемпионом мира по го Ли Седолем в матче, который посмотрели более 200 млн человек во всем мире. Еще совсем недавно, в 2009 г., лучшая компьютерная программа для игры в го оценивалась как соответствующая любительскому уровню, а уже спустя семь лет AlphaGo обыграла чемпиона мира. В 2016 г. в самом престижном академическом журнале Nature была опубликована статья, описывающая алгоритмы глубокого обучения, заложенные в AlphaGo{12}.

1 2 3 4 5 6 7
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: