Books-Lib.com » Читать книги » Домашняя » Страх физики. Сферический конь в вакууме - Лоуренс Краусс

Читать книгу - "Страх физики. Сферический конь в вакууме - Лоуренс Краусс"

Страх физики. Сферический конь в вакууме - Лоуренс Краусс - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Страх физики. Сферический конь в вакууме - Лоуренс Краусс' автора Лоуренс Краусс прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

314 0 17:02, 24-05-2019
Автор:Лоуренс Краусс Жанр:Читать книги / Домашняя Год публикации:2017 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Страх физики. Сферический конь в вакууме - Лоуренс Краусс", которую можно читать онлайн бесплатно без регистрации

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
1 ... 50 51 52 53 54 55 56 57 58 59
Перейти на страницу:

В то время как теории, подобные теории Ферми, являются «больными», то есть дают прямые указания на необходимость их «лечения» путем введения новой физики на малых масштабах, а теории, подобные Стандартной модели, такими «болезнями» не страдают, последние тоже указывают на возможность существования новых явлений на малых масштабах, потому что они являются масштабно-зависимыми, а именно они чувствительны к тому, на каких характерных расстояниях мы проводим эксперименты для определения их основных параметров. В то время как мы включаем в рассмотрение процессы с участием виртуальных частиц, происходящие на все меньших и меньших расстояниях, чтобы получить согласие с измеряемыми в соответствующих экспериментах параметрами, эти параметры, по мере того как мы проникаем все глубже в структуру материи, меняются предсказуемым образом! По этой причине свойства орбитального электрона, взаимодействующего с атомным ядром, отличаются от свойств электрона, который участвует во взаимодействии с частицами внутри атомного ядра. Но самое главное, что это отличие может быть рассчитано!

Это замечательный результат. Хотя мы должны отказаться от мысли, что Стандартная модель — это единая, непререкаемая теория, применимая на всех масштабах, она порождает континуум эффективных теорий, каждая из которых применима на соответствующем масштабе, и мы можем вычислить, как они себя ведут при изменении масштаба. Имея настолько хорошо ведущую себя теорию, как Стандартная модель, мы способны предсказать, как должны измениться законы физики при изменении масштаба!

Откровение о зависимости законов физики от масштаба явлений пришло достаточно поздно и нашло отражение в работах Кеннета Вильсона, опубликованных им в 1960-хгодах. За эти работы Вильсон был удостоен Нобелевской премии. Эти идеи берут начало в физике конденсированных сред. Напомню, что масштабно-зависимое поведение материалов является важной особенностью, определяющей их свойства вблизи фазового перехода. Например, обсуждая процесс закипания воды, мы рассматривали изменение ее свойств на разных масштабах. В случайно выбранном маленьком объеме у нас может оказаться и жидкая вода, и пузырек пара, но при переходе к большим объемам локальные флуктуации усредняются и «в среднем по кастрюле» вода оказывается жидкой. То есть, переходя к большим масштабам, мы выкидываем из рассмотрения детали, существенные на меньших масштабах и несущественные на больших, если нас интересуют макроскопические свойства жидкой воды.

Однако если у нас есть фундаментальная теория воды, включающая описание ее поведения на малых масштабах, мы можем попытаться точно вычислить, как будет влиять на макроскопические свойства воды включение в расчет ее микроскопических свойств. Так, можно рассчитать все свойства материалов вблизи критической точки, где, как я уже говорил, становится важным масштабно-зависимое поведение вещества. Те же самые методы применимы и к описанию фундаментальных физических взаимодействий. Теории, подобные КЭД, содержат в себе семена своей собственной зависимости от масштаба.

Масштабные соображения открывают перед физиками новый мир. Я проиллюстрирую, как это происходит, на примере сферического коня из начала книги. Определив экспериментально плотность обычного коня и прочность его шкуры, я затем могу предсказать свойства суперконя.

Может ли в таком случае Теория сферического коня в вакууме претендовать на роль Общей теории коней? Априори мы не можем доказать это утверждение, но у нас есть по крайней мере три различных способа его опровергнуть. Наше предположение будет ложным, если:

• на каком-то масштабе теория предсказывает ерунду;

• существует более простая модель, чем сферический конь, предсказания которой совпадают с предсказанием Теории сферического коня;

• мы можем поставить эксперимент, который на каком-то масштабе даст результат, противоречащий предсказаниям теории.

Вот пример такого эксперимента. Допустим, я бросаю в сферического коня маленький кристаллик соли. Теория предсказывает, что кристаллик отскочит от коня:

Страх физики. Сферический конь в вакууме

Проведя серию экспериментов с реальным конем, я обнаруживаю, что кристаллик соли отскакивает от коня не всегда. Он не отскакивает, например, если попадает коню в рот.

Точно так же изучение зависимости законов природы от масштаба явлений дает ученым в руки орудия для охоты на новые фундаментальные физические законы. Классическим примером является история изучения слабого взаимодействия А вот еще несколько примеров.

Масштабирование фундаментальных законов физики можно производить как «вверх», так и «вниз». В отличие от экономики, в физике оба этих метода прекрасно работают. Мы можем исследовать поведение теории на все меньших масштабах в попытке обнаружить на этом пути новые идеи. Или же, наоборот, имея теорию, описывающую то, что происходит на очень малых масштабах, недоступных нашей измерительной аппаратуре, мы можем путем усреднения мелкомасштабных флуктуации рассчитать ее предсказания на более крупных масштабах, таких, на которых мы уже способны проверить предсказания экспериментально.

Эти два подхода охватывают весь спектр сегодняшних исследований на передовом рубеже науки. В главе 2 я описал историю создания теории сильного взаимодействия, которое связывает кварки внутри протонов и нейтронов. Важнейшую роль в ней играет идея асимптотической свободы. Теория сильного взаимодействия — квантовая хромодинамика (КХД) — отличается от КЭД эффектом, который создает облако виртуальных частиц. В КЭД этот эффект приводит к появлению «шубы», окружающей электрон и экранирующей его электрический заряд для удаленного наблюдателя. Чем ближе мы находимся к электрону, тем больший эффективный заряд мы наблюдаем. В то же время, как обнаружили Вильчеки Политцер, сильный заряд[19] кварка в КХД ведет себя наоборот. Чем ближе друг к другу находятся кварки, тем слабее они взаимодействуют друг с другом: «шуба» из виртуальных частиц не уменьшает, а увеличивает эффективный сильный заряд кварка для удаленного наблюдателя!

Вооружившись теорией, правильно описывающей взаимодействие кварков на малых расстояниях, можно попытаться проследить, что происходит при увеличении масштаба. Перейдя к расстояниям, сравнимым с размерами протонов и нейтронов, путем усреднения флуктуации, связанных с поведением отдельных кварков, можно надеяться получить эффективную теорию, описывающую поведение протонов и нейтронов. К сожалению, из-за того что взаимодействие кварков на таких расстояниях оказывается очень сильным, никому до сих пор не удалось получить хорошего согласия расчетов с экспериментом, но есть надежда, что с дальнейшим ростом вычислительных мощностей и производительности компьютеров эта задача будет в конце концов решена.

Большой успех масштабируемого подхода к теории сильного взаимодействия в начале 1970-х годов придал теоретикам смелости устремиться дальше в глубины материи, на расстояния, еще недоступные для ускорителей того времени. В этом смысле они стали последователями Льва Ландау — советского Фейнмана. В 1950-х годах этот блестящий физик уже показал, что электрический заряд электрона эффективно увеличивается при уменьшении расстояния между электроном и пробной частицей. Если быть точным, то он показал, что если экстраполировать предсказания КЭД на невообразимо малые расстояния, то эффективный электрический заряд электрона становится чрезвычайно большим. Вероятно, это был первый «звонок» к изменению КЭД, хотя в то время результат Ландау еще не воспринимался как обоснование необходимости модификации КЭД на малых масштабах.

1 ... 50 51 52 53 54 55 56 57 58 59
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Алла Гость Алла10 август 14:46 Мне очень понравилась эта книга, когда я её читала в первый раз. А во второй понравилась еще больше. Чувствую,что буду читать и перечитывать периодически.Спасибо автору Выбор без права выбора - Ольга Смирнова
  2. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  3. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  4. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
Все комметарии: