Books-Lib.com » Читать книги » Домашняя » Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер

Читать книгу - "Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер"

Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер' автора Майкл Файер прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

1 305 0 15:58, 25-05-2019
Автор:Майкл Файер Жанр:Читать книги / Домашняя Год публикации:2016 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер", которую можно читать онлайн бесплатно без регистрации

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.
1 ... 51 52 53 54 55 56 57 58 59 ... 93
Перейти на страницу:

Одиночные, двойные и тройные связи

В главе 11, обсуждая связывание на основе положения атома в Периодической таблице, мы воспользовались представлением о том, что атом стремится сформировать ковалентные связи таким образом, чтобы совместное использование электронов позволяло ему достичь конфигурации благородного газа. Для обсуждаемых здесь элементов второй строки Периодической таблицы — азота, кислорода и фтора — таким благородным газом является неон. Как уже говорилось, атом фтора, который на один электрон отстаёт от конфигурации атома неона, будет совместно с другим атомом использовать один электрон. Атом кислорода, на два элемента отстающий от конфигурации атома неона, будет использовать два электрона, а атом азота, которому до неона не хватает трёх электронов, будет совместно использовать три электрона.

Абсолютный минимум. Как квантовая теория объясняет наш мир

Рис. 13.9.Диаграмма энергетических уровней МО для молекулы N2. Имеется одна дополнительная пара σ-связывающих электронов и две дополнительные пары π-связывающих электронов. N2 имеет тройную связь


Здесь мы увидели, что F2 образует одиночную связь, O2 — двойную связь, а N2 — тройную. Одиночный, двойной или тройной тип связи между атомами обозначают F−F, O=O и N≡N соответственно. О связи между атомами принято думать как о совместно используемых электронах. Ковалентная связь — это связь, образованная совместным использованием пары электронов. Двойная связь — это совместное использование двух пар электронов, тройная — трёх пар. Когда связывающие МО в точности компенсируются разрыхляющими МО, электроны в действительности не используются атомами совместно. Они находятся на молекулярных орбиталях, но связывающие МО порождают конструктивную интерференцию волн амплитуды вероятности, а разрыхляющие МО — деструктивную интерференцию и гасят друг друга. Электроны в этом случае называются неподелёнными парами. Эти пары электронов не дают вклада в связывание. Только одиночная связь, то есть совместно используемая пара электронов в молекуле F2, обеспечивает каждому из атомов F дополнительный электрон, необходимый им для достижения конфигурации атома Ne. В молекуле O2 двойная связь (совместное использование двух пар электронов) обеспечивает по два дополнительных электрона каждому атому O, что позволяет им достичь конфигурации атома Ne. В молекуле N2 тройная связь (совместное использование трёх пар электронов) обеспечивает три дополнительных электрона каждому атому азота, наделяя их конфигурацией атома Ne.

В последовательности молекул F2, O2 и N2 мы обнаружили одиночную, двойную и тройную связи. Совместное использование электронов даёт каждому атому конфигурацию как у атома Ne. Следующий элемент, находящийся слева от азота в Периодической таблице, — это углерод. Можно было бы предположить, что углерод будет формировать четверную связь, чтобы образовать молекулу C2 и достичь конфигурации атома Ne. Однако C2 не существует как стабильная молекула. Причину этого можно понять, если обратиться к рис. 13.9, где приведена диаграмма MO для N2, и удалить два электрона с наибольшей энергией, то есть со связывающей МО σzb. Это дало бы электронную конфигурацию молекулы C2. Однако она имела бы не четверную, а двойную связь, образованную четырьмя электронами, находящимися на двух связывающих π-МО. Наличие только двух связей означает, что атомы углерода в молекуле C2 получили бы за счёт совместного использования только по два, а не по четыре электрона, которые нужны каждому из них, чтобы достичь конфигурации атома Ne. Для достижения этой конфигурации углероду нужно образовать четыре связи, как, например, в молекуле CH4. Он не может образовать четыре связи в молекуле C2, и поэтому такой молекулы не существует.

Молекула F2 имеет одиночную связь, O2 — двойную связь, N2 — тройную. Из табл. 13.1 видно, что порядок связи сильно влияет на её свойства. Чем больше порядок, тем меньше длина и выше энергия химической связи. Энергия связи — это та энергия, которую нужно передать в молекуле, чтобы разрушить связь. Разрушение связи означает разведение атомов на такое расстояние, на котором они перестают чувствовать друг друга. В следующей главе будет показано, что углерод может создавать одиночные, двойные и тройные связи с другим атомом углерода, если одновременно он образует связи с другими атомами, такими как атом водорода. Однако, прежде чем переходить к обсуждению молекул крупнее двухатомных, необходимо выйти за пределы гомонуклеарных двухатомных молекул и познакомиться с гетеронуклеарными двухатомными молекулами, чтобы понять, как молекулярные орбитали формируются неодинаковыми атомами.


Таблица 13.1. Влияние порядка связи на её свойства

Молекула: Порядок связи; Длина связи; Энергия связи

F2: 1; 1,42Å; 2,6∙10−19Дж

O2: 2; 1,21Å; 8,3∙10−19Дж

N2: 3; 1,10Å; 15,6∙10−19Дж

Гетеронуклеарные двухатомные молекулы

В гомонуклеарных двухатомных молекулах МО образуются из атомных орбиталей с одинаковой энергией. В гетеронуклеарных двухатомных молекулах, например в молекуле фтороводорода (HF), два атома различаются. Поскольку атомы различны, энергия атомных орбиталей одного атома не совпадает с энергией атомных орбиталей другого. В молекуле HF атом водорода имеет один электрон на 1s-орбитали. Атом F имеет девять электронов на орбиталях 1s, 2s и 2p. Молекулы F2 и H2 имеют одиночные связи. На рис. 13.6 видно, что одиночная связь в F2 — это σ-связь, возникшая за счёт связывающей МО σzb. Эта связывающая МО формируется двумя атомными 2pz-орбиталями, по одной у каждого атома F. Молекула H2 имеет одну σ-связь за счёт связывающей МО, образованной двумя 1s-орбиталями (см. рис. 12.7). При образовании молекулы HF встаёт вопрос о том, какая орбиталь F будет объединяться с 1s-орбиталью H для получения МО, обеспечивающей связывание. Расчёты, проведённые в соответствии с квантовой теорией, показывают, что близкие по энергии состояния (атомные орбитали) могут объединяться и порождать МО с совместным использованием электронов. Атомные орбитали с сильно различающимися по энергии состояниями образуют МО, которые, по сути, эквивалентны атомным орбиталям и не дают вклада в связывание.

Энергия 1s-орбитали атома водорода равна −2,2∙10−18 Дж. (Напомним, знак «минус» означает, что электрон находится в связанном состоянии.) Энергия 1s-орбитали атома фтора (измеренная в молекуле F2) составляет −1,1∙10−16 Дж. Таким образом, 1s-орбиталь атома F примерно в 50 раз ниже по энергии, чем 1s-орбиталь атома H. Это колоссальная разница в энергии, так что 1s-орбиталь водорода не будет образовывать МО с 1s-орбиталью фтора. Для сравнения: энергия 2p-орбитали фтора, которая составляет −2,8∙10−18 Дж, примерно на 25 % ниже энергии 1s-орбитали водорода, так что 2p-орбиталь фтора и 1s-орбиталь водорода достаточно близки по энергии, чтобы образовать полноценные МО.

1 ... 51 52 53 54 55 56 57 58 59 ... 93
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: