Books-Lib.com » Читать книги » Домашняя » Математика для любознательных (сборник) - Яков Перельман

Читать книгу - "Математика для любознательных (сборник) - Яков Перельман"

Математика для любознательных (сборник) - Яков Перельман - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Математика для любознательных (сборник) - Яков Перельман' автора Яков Перельман прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

536 0 08:55, 26-05-2019
Автор:Яков Перельман Жанр:Читать книги / Домашняя Год публикации:2008 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Математика для любознательных (сборник) - Яков Перельман", которую можно читать онлайн бесплатно без регистрации

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний.Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.
1 ... 39 40 41 42 43 44 45 46 47 ... 62
Перейти на страницу:

111111 = 111 x 1001.

Но 111 = 3x37, а 1001 = 7x11x13. Отсюда следует, что наш новый числовой феномен, состоящий из одних лишь единиц, представляет собою произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число 111111:

3 x (7 x 11 x 13 x 37) = 3 x 37037 = 111111

7 x (3 x 11 x 13 x 37) = 7 x 15873 = 111111

11 x (3 x 7 x 13 x 37) = 11 x 10101 = 111111

13 x (3 x 7 x 11 x 37) = 13 x 8547 = 111111

37 x (3 x 7 x 11 x 13) = 37 x 3003 = 111111

(3 x 7) x (11 x 13 x 37) = 21 x 5291 = 111111

(3 x 11) x (7 x 13 x 37) = 33 x 3367 = 111111 и т. д.

Вы можете, значит, засадить общество из 15 человек за работу умножения, и хотя каждый будет перемножать другую пару чисел, все получат один и тот же оригинальный результат: 111111.


Задача № 33


То же число 111111 пригодно и для отгадывания задуманных чисел наподобие того, как выполняется это с помощью чисел 1001 и 10101. В данном случае нужно предлагать задумывать число однозначное, т. е. одну цифру, и повторять ее 6раз. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. д. Это дает возможность до крайности разнообразить выполнение фокуса. Как надо поступать в этих случаях, - предоставляю придумать читателю.


Числовые пирамиды

В следующих витринах галлереи нас поражают числовые достопримечательности совсем особого рода - некоторое подобие пирамид, составленных из чисел. Рассмотрим поближе первую из таких «пирамид».


Задача № 34


Математика для любознательных (сборник)

Как объяснить эти своеобразные результаты умножения, эту странную закономерность?


Решение


Возьмем для примера какой-нибудь из средних рядов нашей числовой пирамиды: 123456 x 9 + 7. Вместо умножения на 9 можно умножить на (10 - 1), т. е. приписать 0 и вычесть умножаемое:

Математика для любознательных (сборник)

Достаточно взглянуть на последнее вычитание, чтобы понять, почему тут получается результат, состоящий только из одних единиц.

Мы можем понять это, исходя и из других рассуждений. Чтобы число вида 12345… превратилось в число вида 11111…, нужно из второй его цифры вычесть 1, из третьей - 2, из четвертой - 3, из пятой - 4 и т. д.; иначе говоря, вычесть из него то же число вида 12345…, лишенное своей последней цифры, - т. е. вдесятеро уменьшенное и предварительно сокращенное на последнюю цифру. Теперь понятно, что для получения искомого результата нужно наше число умножить на 10, прибавить к нему следующую за последней цифру и вычесть из результата первоначальное число (а умножить на 10 и отнять множимое - значит, умножить на 9).


Задача № 35


Математика для любознательных (сборник)

Сходным образом объясняется образование и следующей числовой пирамиды, получающейся при умножении определенного ряда цифр на 8 и прибавлении последовательно возрастающих цифр. Особенно интересна в этой пирамиде последняя строка, где в результате умножения на 8 и прибавления 9 происходит превращение полного натурального ряда цифр в такой же ряд, но с обратным расположением.

Попытайтесь объяснить эту особенность.


Решение


Получение таких странных результатов уясняется из следующей строки:

Математика для любознательных (сборник)

* Почему 12345 x 9 + 6 дает именно 111111, было показано при рассмотрении предыдущей числовой пирамиды.

то есть 12345 x 8 + 5 = 111111 - 12346. Но вычитая из числа 111111 число 12346, составленное из ряда возрастающих цифр, мы, как легко понять, должны получить ряд убывающих цифр 98765.


Задача № 36


Вот, наконец, третья числовая пирамида, также требующая объяснения:

Математика для любознательных (сборник)

Решение


Эта пирамида есть прямое следствие первых двух. Связь устанавливается очень легко. Из первой пирамиды мы знаем уже, что, например:

12345 x 9 + 6 = 111111.

Умножив обе части на 8, имеем:

(12345 x 8 x 9) + (6 x 8) = 888888.

Но из второй пирамиды мы знаем, что

12345 x 8 + 5 = 98765, или 12345 x 8 = 98760.

Значит:

888888 = (12345 x 8 x 9) + (6 x 8) = (98760 x 9) + 48 = (98760 x 9) + (5 x 9) + 3 = (98760 + 5) x 9 + 3 = 98765 x 9 + 3.

Вы убеждаетесь, что оригинальные числовые пирамиды не так уже загадочны, как кажутся с первого взгляда. Курьезно, что мне случилось как-то видеть их напечатанными в одной немецкой газете с припиской: «Причина такой поразительной закономерности никем еще до сих пор не была объяснена»…


Девять одинаковых цифр

Задача № 37


Конечная строка первой из сейчас (стр. 215) рассмотренных «пирамид»:

12345678 x 9 + 9 = 111111111

представляет образчик целой группы интересных арифметических курьезов, собранных в нашем музее в следующую таблицу:

Математика для любознательных (сборник)

Откуда такая закономерность в результатах?


Решение


Примем во внимание, что

12345678 x 9 + 9 = (12345678 + 1) x 9 = 12345679 x 9.

Поэтому

12345679 x 9 = 111111111.

А отсюда прямо следует, что

12345679 x 9 x 2 = 222222222

12345679 x 9 x 3 = 333333333

12345679 x 9 x 4 = 444444444 и т. д.


Цифровая лестница

Задача № 38


Что получится, если число 111111111, с которым мы сейчас имели дело, умножить само на себя? Заранее можно предвидеть, что результат должен быть диковинный, - но какой именно?

1 ... 39 40 41 42 43 44 45 46 47 ... 62
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Алла Гость Алла10 август 14:46 Мне очень понравилась эта книга, когда я её читала в первый раз. А во второй понравилась еще больше. Чувствую,что буду читать и перечитывать периодически.Спасибо автору Выбор без права выбора - Ольга Смирнова
  2. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  3. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  4. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
Все комметарии: