Books-Lib.com » Читать книги » Домашняя » Идеальная теория. Битва за общую теорию относительности - Педро Феррейра

Читать книгу - "Идеальная теория. Битва за общую теорию относительности - Педро Феррейра"

Идеальная теория. Битва за общую теорию относительности - Педро Феррейра - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Идеальная теория. Битва за общую теорию относительности - Педро Феррейра' автора Педро Феррейра прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

814 0 15:57, 25-05-2019
Автор:Педро Феррейра Жанр:Читать книги / Домашняя Год публикации:2014 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
00

Аннотация к книге "Идеальная теория. Битва за общую теорию относительности - Педро Феррейра", которую можно читать онлайн бесплатно без регистрации

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов. История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.
1 ... 38 39 40 41 42 43 44 45 46 ... 70
Перейти на страницу:

Частицы во Вселенной делятся на два типа: фермионы и бозоны. Опыт показывает, что частицы, из которых состоит материя, являются преимущественно фермионами, а вот за взаимодействия в природе отвечают в основном бозоны. К фермионам относятся строительные блоки атомов, например электроны, протоны и нейтроны. Как мы убедились при рассмотрении белых карликов и нейтронных звезд, эти частицы обладают странным свойством, вытекающим из принципа запрета Паули: в одном квантовом состоянии может находиться не более одной частицы. При попытке поместить их в одинаковое состояние они расталкиваются квантовым давлением. Фаулер, Чандра и Ландау использовали это давление, чтобы объяснить, каким образом белые карлики и нейтронные звезды поддерживают свое состояние при массах ниже критической. В отличие от фермионов, бозоны не подчиняются принципу запрета Паули и при желании могут объединяться друг с другом. Примером бозона является носитель электромагнитной силы фотон.

Выведенное Дираком уравнение описывает квантовое физическое поведение электрона, одновременно удовлетворяя специальной теории относительности Эйнштейна. Это уравнение определяет вероятность обнаружения электрона, находящего в определенной точке пространства или перемещающегося с определенной скоростью. Уравнение Дирака определяется не в отдельном пространстве, а в соответствии с требованиями специальной теории относительности, оно единообразно определено во всем пространстве-времени. Оно содержит большое количество уникальной информации об окружающем мире и фундаментальных частицах. К удивлению автора, уравнение предсказало существование античастиц. Античастица — это двойник элементарной частицы, обладающий такой же массой, но противоположным зарядом. Античастицей электрона является позитрон. От электрона он отличается только положительным зарядом. Согласно уравнению Дирака, обе эти частицы должны существовать в природе. Также уравнение предсказывает, что в вакууме могут возникать пары электрон-позитрон, появляясь, по сути, из ниоткуда. Понять это странное явление крайне сложно, особенно с учетом того, что на момент формулирования Дираком уравнения позитронов еще никто не видел. Сведения об этих частицах Дирак скрывал до 1932 года, то есть до момента их обнаружения в процессе исследования космических лучей. На следующий год Дирак получил Нобелевскую премию.

Предложив свое уравнение, Дирак начал революционное переосмысление существующих в окружающем мире частиц и взаимодействий. Если квантовую физику электрона можно описать в том же контексте, что и электромагнитное поле, — то есть в рамках специальной теории относительности Эйнштейна, — почему нельзя квантовать электромагнитное поле как электрон? Вместо простого описания световых волн естественным образом должны были описываться фотоны, то есть кванты света, существование которых Эйнштейн постулировал еще в 1905 году. Квантовая теория электронов и света, известная как квантовая электродинамика, стала следующим шагом на пути объединения частиц и сил. Разрабатываемая после Второй мировой войны Ричардом Фейнманом, Джулианом Швингером и Синъитиро Томонагой, она указала новый способ изучения квантовой физики: квантованные частицы (электроны) и силы (электромагнитное поле) как одно целое. Квантовая электродинамика имела феноменальный успех, позволив своим создателям с удивительной точностью предсказать свойства электронов и электромагнитных полей и сделав их лауреатами Нобелевской премии.

Несмотря на то что она замечательно работала, квантовая электродинамика раздражала Поля Дирака. Ведь основой ее успеха стал метод вычислений, бросивший вызов внутренней вере Дирака в простоту и элегантность математики. Он назывался перенормировкой. Чтобы понять его суть, рассмотрим процедуру, которая в квантовой электродинамике используется для вычисления массы электрона. Масса электрона была точно измерена в лабораториях и составляет 9,1∙10-28 граммов — это очень маленькое число. Но уравнения квантовой электродинамики дают для этого параметра бесконечно большое число. Это связано с тем, что квантовая электродинамика допускает создание из ничего и последующую аннигиляцию протонов и короткоживущих пар электрон-позитрон — частиц и античастиц из уравнения Дирака. Появляясь из вакуума, все эти виртуальные частицы увеличивают внутреннюю энергию и массу электрона, в конечно счете делая ее бесконечной. Таким образом, квантовая электродинамика при некорректном применении сплошь и рядом приводит к бесконечности, давая неверный ответ. Однако Фейнман, Швингер и Томонага утверждали, что так как наблюдения показывают конечную массу электрона, можно взять бесконечный результат вычислений и «перенормировать» его, заменив известным измеренным значением.

Для недоброжелательно настроенного наблюдателя процедура перенормирования выглядит как отбрасывание бесконечностей и произвольная подстановка вместо них конечных значений. Поль Дирак открыто заявил, что его «крайне не устраивает такая ситуация». Он утверждал: «Подобная математика не имеет смысла. В математике допустимо пренебречь параметром, если он мал, но нельзя отбрасывать его потому, что он бесконечно велик, а вам он в таком виде не подходит!» Все это выглядело частью какого-то почти магического ритуала, хотя и давало, без сомнения, отличные результаты.

Квантовая электродинамика стала первым шагом на долгом пути к объединению, но в промежуток с 1930-х по 1960-е годы внезапно выяснилось, что кроме электромагнитной и гравитационной существуют еще две силы, которые нужно включить в общую картину. Во-первых, это слабое взаимодействие, предложенное в 1930-х годах итальянским физиком Энрико Ферми для объяснения особого типа радиоактивности, известного как бета-распад. При бета-распаде нейтрон преобразуется в протон, освобождая при этом один электрон. Такой процесс невозможно понять в рамках теории электромагнитных взаимодействий, поэтому Ферми предложил новую силу, допускающую такие преобразования. Она действует только на очень коротких межъядерных дистанциях, уступая по интенсивности электромагнитным взаимодействиям, откуда, собственно, и появилось ее название. Другая сила — сильное взаимодействие — объединяет протоны и нейтроны при формировании ядра. Также она отвечает за объединение более фундаментальных частиц, называемых кварками, из которых состоят протоны, нейтроны и масса других частиц. Также действуя на крайне короткой дистанции, она намного превосходит по интенсивности слабое взаимодействие (отсюда и говорящее имя). Аналогично тому как в XIX веке Джеймс Клерк Максвелл объединил электричество и магнетизм в электромагнитное взаимодействие, теперь требовалось изобрести общий подход к работе со всеми четырьмя фундаментальными взаимодействиями: гравитационным, электромагнитным, а также сильным и слабым межъядерными.

В течение 1950-х и 1960-х как сильное, так и слабое межъядерные взаимодействия систематически анализировались и подробно изучались. По мере того как улучшалось их понимание, между ними и электромагнитным взаимодействием начало проявляться математическое сходство, заставляя предположить, что, возможно, речь идет об одной и той же силе, которая в зависимости от ситуации проявляется себя по-разному. К концу 1960-х Стивен Вайнберг из Массачусетского технологического института, Шелдон Глэшоу из Гарварда и Абдус Салам из Имперского колледжа в Лондоне предложили новый способ объединения по меньшей мере двух из этих взаимодействий — электромагнитного и слабого межъядерного — в электрослабое взаимодействие. Сильное межъядерное взаимодействие пока не получилось включить в эту концепцию, но оно было так похоже на остальные силы, что существовало твердое убеждение в возможности «большой, единой теории» электромагнитного, слабого и сильного взаимодействий. В 1970-е выяснилось, что теории электрослабого и сильного взаимодействий, как и квантовая электродинамика, допускают перенормирование. То есть все раздражающие бесконечности, появляющиеся при расчетах, можно заменить известными значениями, сделав теории в высшей степени предсказуемыми. Полученная комбинация теорий электрослабого и сильного взаимодействий стала известна как стандартная модель и дала точные предсказания, проверенные, например, на гигантском ускорителе частиц в лаборатории ЦЕРН в Женеве. Эта почти полностью унифицированная и функциональная квантовая теория трех взаимодействий — электромагнитного, слабого и сильного — стала общепринятой.

1 ... 38 39 40 41 42 43 44 45 46 ... 70
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Илья Илья12 январь 15:30 Книга прекрасная особенно потому что Ее дали в полном виде а не в отрывке Горький пепел - Ирина Котова
  2. Гость Алексей Гость Алексей04 январь 19:45 По фрагменту нечего комментировать. Бригадный генерал. Плацдарм для одиночки - Макс Глебов
  3. Гость галина Гость галина01 январь 18:22 Очень интересная книга. Читаю с удовольствием, не отрываясь. Спасибо! А где продолжение? Интересно же знать, а что дальше? Чужой мир 3. Игры с хищниками - Альбер Торш
  4. Олена кам Олена кам22 декабрь 06:54 Слушаю по порядку эту серию книг про Дашу Васильеву. Мне очень нравится. Но вот уже третий день захожу, нажимаю на треугольник и ничего не происходит. Не включается Донцова Дарья - Дантисты тоже плачут
Все комметарии: