Читать книгу - "Зима: Секреты выживания растений и животных в самое суровое время года - Бернд Хайнрих"
Аннотация к книге "Зима: Секреты выживания растений и животных в самое суровое время года - Бернд Хайнрих", которую можно читать онлайн бесплатно без регистрации
В применении к зимующим насекомым иногда используют еще один (неисключительный) термин – «диапауза», однако, согласно более строгому определению, он означает остановку процессов развития. Во время гибернации процессы развития останавливаются у всех насекомых (отчасти потому, что низкая температура, а то и заморозка тормозит или останавливает в организме биохимические процессы, если только в действие не вступают особые механизмы, призванные обойти холод), но назвать это диапаузой в строгом смысле можно, только если развитие животного не возобновляется в ответ на потепление. У многих (но никак не всех) мотыльков развитие приостанавливается на стадии куколки в конце лета и осенью, когда еще тепло, а затем они в виде куколки в состоянии диапаузы переживают зиму. У других в зависимости от вида гибернация протекает на стадии яйца, гусеницы или взрослой особи. Чтобы приостановилось развитие организма, нужны специальные приспособления, которые в совокупности с другими свойствами животного помогают ему противостоять холоду во время зимовки. Диапауза также встречается отдельно от гибернации. Так, некоторые взрослые насекомые летом входят в репродуктивную диапаузу на время миграции или пока ищут растение-хозяина.
Путаницы в терминологии, связанной с зимней спячкой, можно было бы избежать, определяя гибернацию не через температуру тела или еще какое-то конкретное явление в физиологии или поведении определенного вида, а с позиций функции этого явления, связанной с приспосабливанием. У большинства животных зимняя и/или летняя спячка – это сезонные периоды адаптационного оцепенения, благодаря которым животное может пережить регулярно наступающий голод. Холод, жара и засушливость сезонный голод усугубляют, а гибернация помогает побороть его путем развития различных механизмов приспосабливания[5].
Еще лучше было бы, если бы мы осознали, что всё более точные и ограничивающие определения не делают более точными наши представления ни об одном животном. Животный мир динамичен. Каждый вид выбирает что-то в пределах обширного континуума, который включает в себя почти все, что только можно измерить или вообразить. В зависимости от обстоятельств разные термины применимы к разным животным в разной степени, но в конечном счете вид, а часто и особь, вырабатывает собственное решение для конкретной ситуации и конкретных обстоятельств. Понимание приходит не столько когда мы лепим из явлений категории и даем им определения, сколько когда выделяем специфику в рамках обобщенных свойств. Такие обобщения нередко фиксируют в виде правил или законов, которые по большому счету оказываются статистически выведенными искусственными конструкциями для описания чего-либо. Но животные не подчиняются правилам и не слишком охотно позволяют раскладывать себя по удобным придуманным ячейкам. «Правило» – это не более чем постоянство реакции, которая, как мы считаем, развилась у животного, потому что служит его интересам. Правило – это совокупность решений, принятых отдельными особями. Это результат. В природе всегда остается место хаосу – и творчеству.
Микроскопические живые организмы возникли около 3,5 млрд лет назад, в докембрийский период, – в истории жизни это была первая и самая длинная глава, охватывающая около 90 % всего геологического времени. Какой была Земля, когда появились микроорганизмы, неизвестно, но мы знаем, что в какой-то момент здесь было жарко, как в аду, а в атмосфере не было кислорода. Древние микроорганизмы, вероятно, синезеленые водоросли или организмы, подобные бактериям, изобрели фотосинтез, чтобы получать энергию из солнечного света. В качестве пищи они извлекали из воздуха углекислый газ, а в качестве отходов выделяли кислород, который в дальнейшем изменил атмосферу и, как следствие, климат. Они разработали ДНК для хранения информации, придумали половое размножение, обеспечившее изменчивость для естественного отбора, – и вот стартовала эволюция, ход которой нескончаем и часто непредсказуем.
Молекулярная дактилоскопия предполагает, что сегодня все живое на Земле происходит от одного и того же предка, сходного с бактериями. Этот предок в конце концов породил три основные существующие сегодня ветви живого – архей, бактерий и эукариот (эукариоты – это организмы, клетки которых содержат ядро, в том числе простейшие, водоросли и другие растения, грибы и животные).
Остатки первых бескислородных живых организмов древности, вероятно, дошли до нас слабо изменившимися. Считается, что это потребляющие серу бактерии, которые сегодня живут лишь в немногочисленных оставшихся местах с древними условиями обитания, для человека невыносимыми. В число таких сред обитания входят горячие источники и глубоководные термальные выходы, где с океанского дна поднимается вода температуры 300 °C (она остается жидкой и не превращается в пар, потому что на глубине около 3600 метров находится под большим давлением). Один из видов, проживающих на краю таких горячих водяных скважин, – это Pyrolobus fumarii, этот представитель архей активен при температуре от 90 °C и выдерживает температуру 113 °C. По мере того как Земля остывала, появились новые среды обитания, и от этих или похожих видов произошли новые одноклеточные, а затем и многоклеточные организмы, которые стали заселять появляющиеся более прохладные места.
Много позже некоторые клетки покинули среду обитания своих предков другим способом: они проникли в другие клетки, обнаружили, что условия здесь благоприятны для выживания, и приспособились к ним. В конце концов у таких исходно паразитических организмов с хозяевами установились отношения сотрудничества, или симбиоза. В итоге эти связи оказались взаимовыгодными, а судьбоносной среди них, пожалуй, оказалась та, в рамках которой некоторые докембрийские зеленые водоросли стали успешно расти внутри других клеток и в результате превратились в хлоропласты, а их хозяева – в зеленые растения.
Способность захватывать солнечную энергию породила многоклеточные организмы и то поразительное разнообразие, которое мы наблюдаем сегодня в живой природе. Вслед за тем, как развилась эта способность, а может быть, одновременно на клеточном уровне произошло еще одно вторжение, из паразитического ставшее взаимовыгодным симбиотическим[6]. Благодаря растениям появился кислород, затем образовались бактерии, поглощающие кислород и энергию, и некоторые из них, поселившись внутри других клеток, превратились в митохондрии, а их хозяева стали животными. Митохондрия в клетке – это источник сил и аппарат энергоснабжения, который при наличии доступа к кислороду позволяет клетке расходовать гораздо больше энергии. В результате стала возможна эволюция многоклеточных животных. Одно из ярчайших проявлений высокого энергетического уровня, на котором существуют живые организмы за счет работы митохондрий, – это конечно же такие животные, как корольки, способные на протяжении всей северной зимы постоянно функционировать на оборотах, для нас практически невообразимых.
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев