Books-Lib.com » Читать книги » Домашняя » Нильс Бор. Квантовая модель атома - Хайме Наварро

Читать книгу - "Нильс Бор. Квантовая модель атома - Хайме Наварро"

Нильс Бор. Квантовая модель атома - Хайме Наварро - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Нильс Бор. Квантовая модель атома - Хайме Наварро' автора Хайме Наварро прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

469 0 11:31, 26-05-2019
Автор:Хайме Наварро Жанр:Читать книги / Домашняя Год публикации:2017 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Нильс Бор. Квантовая модель атома - Хайме Наварро", которую можно читать онлайн бесплатно без регистрации

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
1 ... 23 24 25 26 27 28 29 30 31 32
Перейти на страницу:

С самого начала явление не казалось совсем уж невообразимым. Несколько лет назад было принято знаменитое уравнение Эйнштейна, Е = mc2, связавшее материю и энергию. Но на сей раз это отношение было впервые сфотографировано в лаборатории. И удалось это сделать Блэкетту и Оккиалини.

Таким образом, позитрон добавлял неожиданную характеристику понятию элементарной частицы: они могут создаваться и аннигилировать, превращаясь в энергию. То, что не допускалось для атома Дальтона в начале XIX века, теперь совершали даже его компоненты.


ЯДЕРНАЯ ФИЗИКА

Летом 1932 года семья Боров переехала в особняк, который фонд •«Карлсберг» предоставлял тому, кого исполнительный комитет сочтет самым влиятельным датчанином в культуре или науке на национальном и международном уровне. Проживать в этой резиденции было честью, но это также подразумевало многочисленные официальные обязанности, поскольку в особняке проводились встречи со знатными лицами и выдающимися деятелями политики, экономики и культуры. С этими задачами Боры — особенно Маргрет — всегда справлялись как радушные хозяева.

Первыми почетными гостями, которых Боры приняли в своей новой резиденции в сентябре 1932 года, стали Резерфорд с супругой, которым недавно были пожалованы титулы лорда и леди Резерфорд Нельсон. Это, безусловно, стало особенно волнительным моментом для обоих друзей. С тех пор как состоялась их первая встреча, миновало 20 лет. Тогда информация о структуре атома была минимальной, было известно лишь, что существуют электроны. Резерфорд и Бор изменили это представление за несколько лет работы в Манчестере, и сейчас они видели, как их детища, Институт теоретической физики в Копенгагене и Кавендишская лаборатория в Кембридже, стали центрами мировой физики, ядерной физики.

Действительно, 1932 год считается чудесным годом для Кавендишской лаборатории: там не только был открыт нейтрон и «рожден» позитрон, но также успешно создан и запущен первый ускоритель частиц, с помощью которого физики Джон Дуглас Кокрофт (1897-1967) и Эрнест Уолтон (1903-1995) добились первого искусственного радиоактивного распада в истории.

Доказательство существования нейтрона и позитрона, наряду с предположением о существовании нейтрино, радикально изменило понимание атомного ядра, и уже можно было дать первое связное объяснение первому ядерному явлению — радиоактивности. Ведь если ядро состоит лишь из протонов и нейтронов и точно известно, что β-излучение состоит только из электронов, которых нет в оболочке атома, откуда берутся эти электроны? В 1930 году Паули ввел почти призрачную частицу (не имеющую заряда, массы и практически необнаружимую) — нейтрино,— которая испускалась при β-излучении.

Первую теорию, все еще справедливую в ее основных принципах, в декабре 1933 года сформулировал Энрико Ферми (1901-1954). Эта теория была настолько прогрессивной, что при первых попытках опубликовать статью издатели научных журналов отказывались печатать ее, посчитав исключительно умозрительной. И это после 20 лет постоянных прорывов в физике!


Ученые зависят не от идей одного человека, а от комбинированной мудрости тысяч людей, которые все вместе думают над одной и той же проблемой. Каждый из них вносит свой маленький вклад в структуру знания, которая постепенно выстраивается.

Эрнест Резерфорд


Теория Ферми гласит, что в ядре нейтрон может трансформироваться в протон + электрон + нейтрино, при этом последние два испускаются вне ядра. То же самое может происходить с трансформацией протона в нейтрон + позитрон + нейтрино, благодаря чему образуется искусственная радиоактивность, которую некоторое время назад открыли супруги Ирен Кюри (1897-1956), дочь Марии Кюри, и Фредерик Жолио-Кюри.

При этих трансформациях масса, заряд и другие величины, например спин, сохранялись. Как видно, Ферми укрепил в этой теории идею о том, что элементарные частицы не так уж и элементарны, они способны трансформироваться одна в другую.

Идею подхватил Гейзенберг, а через некоторое время японец Хидэки Юкава (1907-1981) объяснил, как протонам и нейтронам удается оставаться такими сплоченными в столь маленьком пространстве, как атомное ядро. С учетом действия единственных известных на тот момент сил — гравитационной и электромагнитной — эта сплоченность была невозможной из-за электростатического отталкивания, которое должны были испытывать протоны (все с положительным зарядом).

Нильс Бор. Квантовая модель атома

РИС . 5

Ядерные протоны и нейтроны сплочены благодаря их постоянной смене сущностей, результату взаимообмена мезона.


Гейзенберг ввел термин «нуклон» в отношении как протонов, так и нейтронов. Его идея состояла в том, что протоны постоянно превращаются в нейтроны, а те — в протоны, и именно эта постоянная смена сущности поддерживает нуклоны сплоченными (см. рисунок 5). Юкава в 1934 году допустил, что эта трансформация протонов в нейтроны, и наоборот, осуществляется с созданием, взаимообменом и аннигиляцией промежуточной частицы — мезона.

В 1937 году в космических лучах была обнаружена новая частица, характеристики которой походили на предсказанные Юкавой, включая непродолжительность их жизни. Так что умозрительная частица Юкавы была сразу же отождествлена с мезоном, замеченным в космических лучах. После Второй мировой войны это отождествление было признано неверным (мезон космических лучей и мезон Юкавы оказались двумя различными частицами), но это способствовало созданию первого устойчивого образа атомного ядра и пониманию, что его внутренние силы отличаются от известных до тех пор. Это стало первым шагом на пути к тому, что мы сегодня знаем как «слабое взаимодействие» (сила Ферми в радиоактивности) и «сильное взаимодействие» (сила Юкавы).


ЭКСПЕРИМЕНТАЛЬНАЯ НАУКА В КОПЕНГАГЕНЕ

С момента открытия в годы Первой мировой войны Института теоретической физики основным оборудованием в нем были бумага и карандаш, доска и мел, а также постоянно пополнявшийся книжный и журнальный фонд. В 1930-х Бор реорганизовал свое учреждение и превратил его также в экспериментальный центр ядерной физики первого порядка.

Успех первого ускорителя частиц Кокрофта и Уолтона в Кембридже подстегнул сооружение других ускорителей и развитие новых технологий во многих центрах физики во всем мире. Бор решил, что Копенгаген не может отстать в этой набирающей обороты гонке. Благодаря авторитету и административным способностям Бор получил финансирование, достаточное для строительства не одного, а трех ускорителей: двух линейных и одного циклического, или циклотрона.

Смысл ускорителей был не только в изучении ядерной физики на более глубоком уровне, но и в производстве радиоактивных изотопов для медицинских целей. И именно так сложился симбиоз биологии с физикой в Институте Бора.

Дьёрдь де Хевеши, с которым Бор уже сотрудничал в Манчестере, отвечал за развитие биологической части ядерного проекта. Идея заключалась в создании радиоактивных изотопов низкой интенсивности для использования в качестве маркеров в тканях и органах.

1 ... 23 24 25 26 27 28 29 30 31 32
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Алла Гость Алла10 август 14:46 Мне очень понравилась эта книга, когда я её читала в первый раз. А во второй понравилась еще больше. Чувствую,что буду читать и перечитывать периодически.Спасибо автору Выбор без права выбора - Ольга Смирнова
  2. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  3. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  4. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
Все комметарии: