Читать книгу - "Критическая масса. Как одни явления порождают другие - Филип Болл"
Аннотация к книге "Критическая масса. Как одни явления порождают другие - Филип Болл", которую можно читать онлайн бесплатно без регистрации
Мы можем рассматривать отклонения от соотношения 50:50 при бросании монет в качестве ошибок, сдвигающих «результаты измерения» в сторону от «истинного» значения. Это может показаться каким-то извращением или обманом, поскольку ранее уже было заявлено, что броски совершаются совершенно честно, так что речь может идти не об ошибке, а о какой-то непонятной случайности. Однако в 1770-х годах Лаплас осознал, что ошибки измерений также являются результатом действия не поддающихся расчету (или слишком сложных для количественной оценки) факторов, вызывающих случайные отклонения от истинных значений. После этого Лаплас и другие астрономы стали пользоваться приближенной формулой Муавра для оценки ошибок в своих астрономических измерениях.
В начале XIX столетия французский математик Жозеф Фурье (1768— 1830) также начал широко применять в расчетах нормальное распределение. Будучи директором Бюро департамента статистики, он опубликовал несколько статей по вопросам демографической статистики, способствуя знакомству научной общественности с этой кривой. Лаплас также пытался применить уравнение Муавра в задачах, связанных с социальной статистикой. В 1781 году он показал, что примерное равенство числа рождений мальчиков и девочек в Париже, что традиционно считалось свидетельством божественного Провидения, представляет собой просто следствие уравнения Муавра для случайного процесса с двумя равновероятными исходами, а отклонения от него прекрасно укладываются на кривую ошибок.
Ознакомившись с работами Лапласа, Кетле был настолько поражен ролью нормального распределения, что даже стал считать, что именно оно является фундаментальным уравнением, описывающим любые демографические процессы. В 1844 году ему удалось продемонстрировать, что статистические данные о параметрах сложения человека — высоте и обхвату — также отлично укладываются на «горб» нормального распределения, что казалось ему проявлением порядка и закономерности в природе вообще. В качестве еще одного примера предлагаю читателю посмотреть на толпу пешеходов на какой-нибудь оживленной городской улице. На первый взгляд покажется, что во внешних габаритах людей на улице нет и не может быть никакой упорядоченности (понятно, в разумных пределах), однако читатель может быть уверен, что, собрав статистические данные относительно сложения, веса и т. п. всей этой массы прохожих, он получит данные, которые прекрасно согласуются с описанным колоколообразным распределением.
За время пребывания во Франции Кетле воспринял от французских коллег общую идею о связи статистических отклонений с ошибками, поэтому стал считать, например, вариации в росте человека не характерной особенностью естественного строения человеческого тела, а неким отклонением от идеальной формы. Такие «ошибки» становились менее заметными при включении в статистику достаточно большого числа людей, что и предсказывалось законом больших чисел Пуассона. Кетле сделал вывод, что это же правило должно выполняться относительно поведенческих характеристик людей, поскольку физиологи того времени были уверены в том, что все индивидуальные человеческие темпераменты укладываются в несколько классических типов. Уже в 1832 году он писал: «Что касается людей, рассматриваемых в массе, то следует исходить из физического факта, что чем больше число учитываемых личностей, тем больше из них склонны вести себя в соответствии с общими фактами и закономерностями, которые соответствуют существованию и сохранению общества, к которому принадлежат рассматриваемые личности»19.
Поскольку «существование и сохранение общества» представлялось важной и желанной целью, предположение Кетле подразумевало, что именно «усредненное» поведение людей является «правильным», что сразу приводило к некой концепции социальной физики с «усредненным человеком» (Vhomme тоуеті), у которого не только размеры и физические характеристики, но и моральные или эстетические запросы соответствовали общественному идеалу совершенного человека и гражданина. Быть «великим» в этой теории означало быть «средним». Как писал Кетле: «Личность, воплощающая в себя все усредненные качества людей данного момента истории, объединяет в себе величие, красоту и доброту этого момента»20.
Такое тревожное обожествление посредственности, естественно, подразумевало ненависть и подозрение к любым отклонениям: «Отклонения в любую сторону создают не только... уродливые формы тела, но и уродливые проявления моральных свойств, а также здоровья личности»21.
Сама идея о том, что физическое и моральное совершенство человека как-то связано с соответствием какому-то математическому идеалу, восходит еще к эпохе Возрождения[21], однако рассматриваемые нами теории стали подразумевать, что существуют некоторые прямые методы количественной оценки этого «совершенства». С позиций сегодняшнего дня легко разглядеть в «усредняющих» теориях Кетле основы (или хотя бы первые раскаты) грядущих теорий расовой чистоты и социальной «уравниловки», однако стоит вспомнить, что ученые того времени твердо верили в справедливость физиогномики[22], так что эти теории казались очень рациональными, что не отменяет скрытого в них зловещего и опасного смысла.
Французское правительство вскоре оценило политическую полезность научной концепции об «усредненном человеке». В эту эпоху призывники французской армии сами сообщали сведения о себе, и в 1844 году Кетле на основе простого изучения статистических показателей 100 тысяч призывников обнаружил, что примерно 2000 из них солгали и намеренно указали пониженный рост (меньше заданного законом минимума), дабы избежать службы в армии.
Многие современники Кетле с восторгом встретили сообщения об обнаружении им новых статистических закономерностей, относящихся к людям и их поведению. В обзоре, посвященном работам Кетле за 1850 год, выдающийся английский астроном Джон Гершель писал: «Нельзя не восхищаться этим прекрасным научным собранием множества физических данных, относящихся к различным областям, тщательно подобранных в массовом порядке и распределенных по годам и географическим регионам»22.
В период своего обучения в Оксфорде знаменитая впоследствии общественная деятельница Флоренс Найтингейл[23] восхищалась социальной физикой Кетле, полагая ее чуть ли не показателем божественного замысла. Позднее даже Карл Маркс использовал статистические законы Кетле для разработки собственной теории прибавочной стоимости, а Джон Стюарт Милль, последователь известного проповедника утилитаризма Иеремии Бентама, считал, что работы Кетле поддерживают его собственную идею о связи законов истории (абсолютных, если можно определить это понятие) и природы. В своей книге Система логики (1862) Милль, явно имея в виду существование кривой ошибок, писал, что «даже события, происходящие непредсказуемо и неопределенно, когда ни одно из них не поддается анализу или предварительному расчету, при их большом количестве вдруг начинают проявлять некоторые закономерности, подчиняющиеся математическим законам»23.
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев