Books-Lib.com » Читать книги » Домашняя » Число, пришедшее с холода. Когда математика становится приключением - Рудольф Ташнер

Читать книгу - "Число, пришедшее с холода. Когда математика становится приключением - Рудольф Ташнер"

Число, пришедшее с холода. Когда математика становится приключением - Рудольф Ташнер - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Число, пришедшее с холода. Когда математика становится приключением - Рудольф Ташнер' автора Рудольф Ташнер прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

465 0 09:39, 26-05-2019
Автор:Рудольф Ташнер Жанр:Читать книги / Домашняя Год публикации:2018 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Число, пришедшее с холода. Когда математика становится приключением - Рудольф Ташнер", которую можно читать онлайн бесплатно без регистрации

Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой. Числа были изобретены для того, чтобы упорядочить мир и сделать его обозримым. Числа — наши слуги, а отнюдь не господа. Числа — не фундамент бытия, но удобные обозначения, облегчающие понимание мира».
1 ... 17 18 19 20 21 22 23 24 25 ... 49
Перейти на страницу:

Оба приведённых примера позволяют вывести эмпирическое правило, которое считается одним из важнейших правил, подаренных математикой человечеству: если положить в банк капитал под определённый процент, то, для того чтобы узнать, через сколько лет капитал удвоится, достаточно разделить число 70 на величину годовой процентной ставки. Сделав это, можно будет точно узнать, когда именно это произойдёт.

Все дело в удвоении, ибо, как уже было сказано, вычисление процентов опирается на умножение.

Вот пример. Допустим, что святой Иосиф, муж Марии, по случаю рождения Христа кладет на счет маленького Иисуса в Вифлеемский банк 1 евро под 3,5 процента годовых. По прошествии 70: 3,5 = 20 лет вклад удвоился, и один евро превратился в два. Когда пройдет двести лет, вклад удвоится десять раз. Так как 210 = 1024, можно сказать, что вклад увеличился тысячекратно, то есть один евро практически превратился в тысячу. Таким образом, через 200 лет к одному евро стало можно приписать три нуля. Сегодня же, более чем 2000 лет спустя, к одному евро надо приписать десять раз по три нуля. Наследники Иисуса могли бы сегодня получить в Вифлеемском банке 1 000 000 000 000 000 000 000 000 000 000 евро, то есть один нониллион евро.

Эта нелегкая задачка благополучно разрешилась не только потому, что у Иисуса не было наследников.

Дело облегчается в еще большей степени, хотя не совсем, и тем, что Вифлеемский банк не продержался бы 2000 лет. Однако есть и примеры удивительного долголетия этих учреждений. Сиенский банк «Монте ди Пьета», о котором мы упомянули в нашей истории, существует по сей день. Этот банк был основан в 1492 г., а в 1624-м был переименован в «Монте деи паски ди Сиена». Это старейший из всех ныне существующих банков в мире.

В большей мере эта задачка разрешается благодаря тому, что в ту эпоху, во время рождения Христа, не было евро, а платежи осуществляли в сестерциях, то есть в валюте, которой сегодня не существует. Тех денег, которые сменяли сестерций на протяжении истории до наших дней, а именно талеров, флоринов, гульденов, сегодня тоже нет. Их уничтожили войны и кризисы, инфляции и денежные реформы.

Когда числа становятся невообразимыми, с ними перестает справляться даже экономика.

Числовой монстр Дональда Кнута

С изобретением степеней математика получила в свое распоряжение очень мощный инструмент обозначения чисел, которые немыслимо получать с помощью умножения, не говоря уже о сложении. Дело в том, что степень тоже можно возвести в степень, получив так называемую степенную башню, например

5

Для начала надо заметить, что существует два способа прочтения этой степенной башни. При первом из них сначала возводят пять в четвертую степень и получают 625, а затем это число возводят в третью степень, то есть 625³ = 244 140 625. В этом случае результат представляют как

(54)³ = 625³ = 244 140 625.

Другой способ представления этого числа заключается в том, что сначала вычисляют выражение 4³, равное 64, а затем возводят в 64-ю степень число 5, то есть вычисляют величину степени 564. Это число, начинающееся с цифр 5421… и содержащее 45 разрядов. В этом случае со степенной башней поступают так:

5(4³) =

= 542 101 086 242 752 217 003 726 400 434 970 855 712 890 625.

Если степенную башню пишут без скобок, то имеют в виду второе из упомянутых выше прочтений. Другими словами, со степенями «работают» справа налево и сверху вниз. Так договорились делать не только потому, что такое прочтение при вычислении приводит к большему результату, а прежде всего потому, что первое прочтение, вообще говоря, не требует написания степеней в виде башни. В самом деле, например, выражение

(54)³ = 54 × 54 × 54 = 54 + 4 + 4 = 54 × 3

в точности соответствует старому школьному правилу: для того чтобы возвести в степень число, выраженное степенью, надо перемножить показатели степени.

Самое большое число, которое можно записать всего тремя цифрами, выглядит так:

Число, пришедшее с холода. Когда математика становится приключением


Это степенная башня, состоящая из трех девяток. Это число начинается с 4281… и содержит 369 693 100 разрядов.

Профессор информатики Стэнфордского университета Дональд Кнут заменил придуманный Брадвардином способ записи степеней новой символикой, которая лучше подходит для программирования, выполняемого обычным текстом. Например, степень 3² Кнут предложил записывать так: 3↑2. Вертикальная стрелка словно заменяет команду считать следующее число показателем степени. Таким же способом, как открыл Кнут, можно сокращенно записывать и степенные башни. Например, символами 3↑↑2 записывают степенную башню, состоящую из двух чисел 3. Это означает 3↑↑2 = 3↑3 = 3³ = 27. Здесь пока не заметно ничего особенного, но хитрость таится в самой записи двух вертикальных стрелок! Ибо 3↑↑3 — это уже степенная башня, состоящая из трех троек, то есть

3↑↑3 = 3↑3↑3 = 3 = 327 = 7 625 597 484 987,

а 3↑↑4 — это степенная башня, состоящая из четырех троек, то есть


Число, пришедшее с холода. Когда математика становится приключением


Этот числовой великан начинается с 1258… и содержит 3 638 334 640 025 разрядов, то есть он больше числа, записанного в виде степенной башни из трех девяток, которая с помощью метода Кнута записывается так: 9↑↑3.

Мало того, Кнут расширил свое обозначение еще на один шаг. Если он помещал между двумя числами три вертикальные стрелки, то число, стоящее справа от тройной стрелки, говорило, сколько раз надо было записать число, стоящее слева, и поставить между ними двойные стрелки. В этом случае с записью Кнута работают, как со степенной башней — то есть справа налево. Например, запись 3↑↑↑2 есть сокращенная запись 3↑↑3. Это число мы с грехом пополам еще можем себе представить — 7 625 597 484 987. Но, например,

3↑↑↑3 = 3↑↑3↑↑3 = 3↑↑7625597484987.

1 ... 17 18 19 20 21 22 23 24 25 ... 49
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Алла Гость Алла10 август 14:46 Мне очень понравилась эта книга, когда я её читала в первый раз. А во второй понравилась еще больше. Чувствую,что буду читать и перечитывать периодически.Спасибо автору Выбор без права выбора - Ольга Смирнова
  2. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  3. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  4. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
Все комметарии: