Читать книгу - "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир"
Аннотация к книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир", которую можно читать онлайн бесплатно без регистрации
Но почему именно это число? Не слишком ли оно неуклюже, чтобы с его помощью определять канонический вид? Разве не много проще было бы с числом 2? Да, наверное, для целей умножения было бы проще. Я не могу объяснить важность числа e, не вдаваясь в вычисления, а я дал торжественный обет объяснить Гипотезу Римана с минимумом вычислений. По этой причине я просто убедительно попрошу вас принять на веру, что e — действительно, действительно важное число и что ни одна другая показательная функция не может и близко сравниться с этой eN. Вот как выглядит наша таблица:
N | eN |
---|---|
1 | 2,718281828459 |
2 | 7,389056098931 |
3 | 20,085536923188 |
4 | 54,598150033144 |
(здесь точность — 12 знаков после запятой). Основной принцип, конечно, сохраняется — аргументы (левая колонка) растут каждый раз за счет добавления 1; при этом значения в правой колонке каждый раз умножаются на e.
VII.
А если наоборот? Представим себе функцию, основанную на таком правиле: когда аргумент растет «по умножению», значения растут «по сложению». Что за функция получится?
Здесь мы вступаем в царство обратных функций. Математики имеют особое пристрастие к тому, чтобы обращать самые разные вещи — выворачивать их наизнанку. Если у есть 8 умножить на x, то как выразить x через y? Понятно, что это y/8. Деление обратно умножению. Еще есть такое любимое нами действие, как возведение в квадрат, когда мы умножаем число само на себя. И каково же его обращение? Если y = x2, то чему равен x в терминах y? Ну да, это квадратный корень из y. Если вы немного знакомы с анализом, то знаете, что есть действие, называемое «дифференцированием», которое позволяет превратить функцию f в другую функцию — g, говорящую о том, какова мгновенная скорость изменения функции f при каждом ее аргументе. И каково же действие, обратное дифференцированию? Это интегрирование. Ну и так далее. Обращение станет ключевой темой позднее, когда мы вникнем в работу Римана 1859 года.
С точки зрения принятого нами подхода, когда функции показаны в виде таблиц, обращение просто означает отражение таблицы, при котором ее правая часть становится левой, а левая — правой. Правда, это быстрый способ нажить себе неприятности. Возьмем функцию возведения в квадрат — скорее всего, первую нетривиальную функцию, с которой вы познакомились в школе. Чтобы возвести число в квадрат, мы умножаем его само на себя. Вот соответствующая таблица:
N | N2 |
---|---|
−3 | 9 |
−2 | 4 |
−1 | 1 |
0 | 0 |
1 | 1 |
2 | 4 |
3 | 9 |
(Я полагаю, что вы помните о правиле знаков, так что −3 умножить на −3 дает 9, а не −9).[19] А теперь поменяем колонки местами и получим обратную функцию:
N | √N |
---|---|
9 | −3 |
4 | −2 |
1 | −1 |
0 | 0 |
1 | 1 |
4 | 2 |
9 | 3 |
Но постойте-ка! Каково же значение функции при аргументе, равном 9? Это −3 или 3? Похоже, что эта функция принимает такой вид:
N | √N |
---|---|
0 | 0 |
1 | 1, а может быть, −1 |
4 | 2 или, возможно, −2 |
9 | 3, или это может равняться −3? |
Так дело не пойдет — слишком путано. Вообще-то… вообще-то существует математическая теория многозначных функций. Бернхард Риман был знатоком этой теории, и мы познакомимся с его идеями в главе 13.v. Но сейчас не время и не место для этого, и я не собираюсь тащить сюда сундук, набитый подобными вещами. Во всяком случае, что касается меня, то железное правило состоит в том, что на один аргумент — самое большее одно значение (ни одного значения, разумеется, если аргумент не лежит в области определения функции). Квадратный корень из 1 равен 1, квадратный корень из 4 равен 2, квадратный корень из 9 равен 3. Означает ли это, что я не признаю того факта, что −3 умножить на −3 даст 9? Разумеется, я его признаю, я просто не включаю его в мое определение «квадратного корня». Вот мое определение квадратного корня (по крайней мере на данный момент): квадратный корень из N есть единственное неотрицательное число (если таковое имеется), которое при умножении само на себя дает N.
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев