Читать книгу - "Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин"
Аннотация к книге "Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин", которую можно читать онлайн бесплатно без регистрации
— Я создан из трех сторон.
Окей, возможно, здесь нет такого откровения, как в моментах самопостижения. Немного похоже на то, как пациент психотерапевта замечает, что лежит на кушетке. Но здесь есть потаенные бездны. Нам откроется новая истина, если мы увидим в треугольнике не просто цельную фигуру, а совокупность трех частей.
Например: для создания треугольника сгодятся не любые три отрезка. Возьмем длины 10, 3 и 2 см. Эти три отрезка образуют этакую недофигуру с зазором — недотреугольник, если вам угодно. Длинный отрезок слишком длинный; короткие слишком коротки. Я окрещу его «Треугольник Ти-рекс», потому что короткие передние лапки не соответствуют массивному туловищу.
Это универсальная истина: самая длинная сторона треугольника должна быть короче, чем сумма двух других.
Это правило совершенно очевидно для мухи, ползущей по периметру треугольника. Ей известно, что путь напрямик (от A до B) всегда будет короче, чем обходной путь (от A до B, минуя C). Таким образом, сумма двух коротких сторон должна быть больше, чем длина третьей стороны.


У этого правила есть компаньон, даже глубже и могущественнее него: «Если три отрезка все-таки образуют треугольник, то один и только один». Поскольку даны три отрезка, импровизации и выдумки здесь неуместны. Есть всего один шаблон.
Например, договоримся, что длины сторон будут равны конкретным величинам (скажем, 5, 6 и 7 cм), разойдемся по отдельным комнатам и сконструируем наши персональные треугольники. Даю гарантию, что мы выйдем оттуда с одинаковыми изделиями.
Поглядите: я кладу мою самую длинную рейку на пол, приставляю и скрепляю две других. Готово! Скосите угол влево, и одна сторона выскользнет; скосите вправо — выскользнет другая. Математики называют такое решение единственным. Даже не предвосхищая ваш метод, я знаю, что вы придете к тому же решению, так как иных решений нет.

Эта истина верна лишь для треугольников. Ни один другой многоугольник на нее не притязает.
Попробуйте проделать то же самое с четырехугольником — кузеном треугольника. Одну рейку я кладу на пол. Следующие две устанавливаю вертикально. И водружаю последнюю рейку сверху, для надежности склеивая концы скотчем. Однако начинает задувать ветерок. Мой квадрат косится. Вся конструкция кренится вправо, как складной стул. Каждую секунду возникает новая фигура, от «квадрата» и «почти квадрата» до «чего-то вроде ромба» и «тощего сверхзаостренного ромба».

Четыре стороны с конкретными длинами не задают единственную фигуру. Наоборот, они задают бесконечное семейство возможных фигур. Любую из них можно превратить в другую, приложив небольшое усилие.
Итак, мы наблюдаем скрытое волшебство треугольника, его секретную идентичность: не просто трехсторонность, а жесткость, которую она за собой влечет.
Вязальщики египетских узлов знали это превосходство. Натягивая канат с 12 узлами, они вызывали из небытия пифагоров треугольник, выколдовывали из каната прямой угол. Вместо этого можете сделать из каната квадрат, но будьте аккуратны: на ваш клич отзовется целое семейство нежелательных фигур. Даже если натянуть канат потуже, углы четырехугольника не удастся удерживать без сбоев. То же самое верно для пятиугольников, шестиугольников, семиугольников и прочих родичей из семейства многоугольников. Никто не в силах сделать то, что может треугольник.
Пирамиды, будучи объемными фигурами, не обладают этим сильным преимуществом. Кубы, конусы, усеченные пирамиды[32] — все они сгодятся для выполнения воли фараона. Шершавому языку камня все равно, какую выговаривать фигуру.
Нет-нет, в мои намерения не входило унижать пирамиды. Да и попробуйте унизить кирпичную махину в девять миллионов тонн. Я восхищен космической точностью этих кирпичей: длины сторон составляют около 20 см, края ориентированы по сторонам света с погрешностью менее 0,1°, углы отличаются от прямого менее чем на 0,01°. Да, египетские котики хорошо знали математику.
Но я должен подчеркнуть, что это триумф землемеров, а не инженеров. Великая пирамида остается, по сути дела, нагромождением блоков. Это круто, если вы хотите воздвигнуть монумент фараонову бессмертию, но использовать такое здание в практических целях, знаете ли, не прикольно. Незатейливые камеры и тесные туннели пирамиды составляют менее 0,1 % ее объема. Вообразите сплошной стальной брусок размером с Эмпайр-стейт-билдинг с одним-единственным щелевидным этажом высотой 60 см, и вы тоже начнете стремиться к более эффективному строительному плану[33].
В последующие века архитекторы будут искать новые поэтические структуры. Они будут строить мосты шире неба и башни выше Вавилонской. И для этого им понадобится фигура необычайной стойкости, обладатель единственного в своем роде непреклонного характера — треугольный, трехсторонний герой.
А теперь наша история пересекается с другой — сагой о человеческой архитектуре, охватывающей 10 000 лет. Краткое содержание предыдущих серий:
1. «Снаружи» — плохое место для жизни. Может похолодать, негде хранить ваши вещи, иногда появляются медведи. Поэтому люди изобрели «внутри».
Конец ознакомительного фрагмента Купить полную версию книги
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
-
Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев