Books-Lib.com » Читать книги » Домашняя » Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов

Читать книгу - "Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов"

Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов' автора Айзек Азимов прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

715 0 13:56, 25-05-2019
Автор:Айзек Азимов Жанр:Читать книги / Домашняя Год публикации:2007 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов", которую можно читать онлайн бесплатно без регистрации

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
1 ... 130 131 132 133 134 135 136 137 138 ... 237
Перейти на страницу:

В то время как электрический заряд, однажды созданный путем натирания «электрика», распространяется по всему веществу, он не пройдет полностью через него, войдя в одной точке и выйдя в другой. С «неэлектриками» же именно так и происходит — через них ток проходит насквозь. Действительно, через металлы электрический ток проходит чрезвычайно быстро, так быстро, что заряженное вещество теряло свой заряд, становясь разряженным, если получало контакт с металлом, соприкасающимся, в свою очередь, с землей. Заряд уходил из вещества через металл в огромное тело земли, распространяясь по которому он становился таким слабым, что его уже нельзя было обнаружить.

Это объясняло тот факт, что металлы не электризовались путем натирания. Электрический заряд, как только появлялся, переходил из металла практически в любое тело, соприкасающееся с ним. Грей поместил металлы на блоки канифоли (которые не допускали прохода электрического заряда). В таких условиях куски металла, если их тщательно потереть, действительно наэлектризовывались, так как формировавшийся в металле заряд не мог сразу пройти через канифоль и был, так сказать, пойман в металле. Короче, в конце концов выяснилось, что электрические силы, как и магнитные, присутствуют в материи повсеместно.

По результатам работы Грея вещества были поделены на два класса. Первый класс включает в себя металлы — наилучшие примеры, в частности, золото, серебро, медь и алюминий — материалы, через которые электрический заряд проходит с огромной скоростью. Это электропроводники. Вещества другой группы, представителями которой являются янтарь, стекло, сера и резина (каучук), — материалы, которые с легкостью электризуются при трении, — оказывают огромное сопротивление электрическому потоку. Это электроизоляторы (от латинского слова, означающего «остров», так как такой материал может быть использован для изоляции электрических объектов, не давая электричеству покидать их и, таким образом, делая предметы, так сказать, островами электричества).

Представления об электростатическом притяжении и отталкивании развил в 1733 году французский химик Шарль Франсуа Дюфе (1698–1739). Он наэлектризовал маленькие кусочки пробки, прикасаясь к ним уже наэлектризованным стеклянным стержнем, так что электрический заряд частично переходил со стекла на пробку. Несмотря на то что стеклянный стержень притягивал пробку, пока последняя не была заряжена, стержень и пробка отталкивали друг друга, когда пробка заряжалась. Более того, два кусочка пробки, заряженные от стекла, также отталкивали друг друга.

То же самое происходило, когда два кусочка пробки были заряжены прикосновением уже наэлектризованного стержня из канифоли. Однако пробка, наэлектризованная стеклом, притягивала пробку, наэлектризованную резиной.

Тогда Дюфе решил, что существуют два вида электрического заряда, и он назвал их «стеклянным электричеством» и «канифольным электричеством». Здесь, как и в случае с северным и южным магнитными полюсами, аналоги отталкивают друг друга, а противоположности притягиваются.

Против этой теории выступил Бенджамин Франклин. В 1740-х годах он провел эксперименты, которые довольно ясно показали, что заряд «стеклянного электричества» мог нейтрализовать заряд «канифольного электричества», так что не оставалось вообще никакого заряда. Эти два вида электричества не были просто разными, они были противоположными.

В качестве объяснения Франклин предположил, что существует только один электрический заряд и в норме все тела обладают им в определенной степени. Когда этот заряд имеется в нормальном количестве, тело не заряжено и не проявляет электрических свойств. В некоторых случаях в результате трения часть электрического заряда покидала натираемое тело, в других случаях, наоборот, заряд тела возрастал. Когда тело получало избыточный заряд, Франклин предложил считать его положительно заряженным, а когда заряд уменьшался — отрицательно заряженным.

Положительно заряженное тело притянет отрицательно заряженное, гак как электрический заряд стремится (так сказать) распределиться равномерно, и при контакте электрический заряд перейдет из места, где он в избытке, в место, где он в недостатке. В обоих телах концентрация заряда станет нормальной, и, таким образом, оба тела станут разряженными.

С другой стороны, два положительно заряженных тела будут отталкивать друг друга, так как избыток заряда в одном теле не будет стремиться к прибавлению такого же заряда из другого тела, скорее наоборот. Так же будут отталкиваться и два отрицательно заряженных тела.

Эти понятия помогают объяснить явление электростатической индукции. Если положительно заряженный объект подносится к незаряженному, то избыток заряда в первом будет отталкивать заряд второго и отводить его в дальнюю часть незаряженного тела, делая ближний край второго тела отрицательно заряженным, а дальний край положительно заряженным. (Незаряженное тело останется незаряженным в целом, так как отрицательный заряд одного края будет уравновешивать положительный заряд другого.)

Теперь будет иметь место притяжение между положительно заряженным телом и отрицательно заряженной частью незаряженного тела. Также будет наличествовать и отталкивание между положительно заряженным телом и положительно заряженной частью незаряженного тела. Однако поскольку положительно заряженный край незаряженного тела находится дальше от положительно заряженного тела, чем отрицательно заряженный край, то сила отталкивания будет слабее, чем сила притяжения, и в результате действовать будет сила притяжения.

То же самое происходит, когда к незаряженному телу подносится отрицательно заряженное. В этом случае электрический заряд незаряженного тела приближается к отрицательно заряженному телу. В незаряженном теле формируется положительно заряженная часть, находящаяся около отрицательно заряженного тела (в результате чего имеется сильное притяжение), и отрицательно заряженная часть, находящаяся дальше от отрицательно заряженного тела (в результате чего имеется слабое отталкивание). Общим действием этих двух сил опять же будет притяжение. Таким образом можно объяснить, почему электрически заряженные тела обеих разновидностей одинаково легко притягивают незаряженные тела.

В вопросах притяжения и отталкивания Франклин представлял себе положительный и отрицательный заряды подобно северному и южному полюсам магнита. Однако оставалось одно важное различие. Магнетизм Земли позволял стандартно различать между собой полюса магнита в зависимости от того, на север или на юг указывает определенный полюс. Но способа так же легко отличить отрицательный электрический заряд от положительного не обнаружилось.

По Франклину, положительный заряд получался в результате избытка электричества, но раз уж нет абсолютной разницы в поведении между «стеклянным электричеством» и «канифольным», то как можно определить, какой электрический заряд происходит от избытка заряда, а какой — от недостатка? Обе разновидности различаются только отношением друг к другу.

Франклину пришлось угадывать, четко понимая, что у него один шанс из двух, то есть шансы равны. Он решил, что натертое стекло приобретает электрический заряд и является положительно заряженным, а натертая канифоль теряет электрический заряд и становится отрицательно заряженной. После принятия этого решения все электрические заряды могли быть определены как положительные или отрицательные в зависимости от того, притягивались они или отталкивались зарядом, который уже был определен как положительный или отрицательный.

1 ... 130 131 132 133 134 135 136 137 138 ... 237
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  2. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  3. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
  4. Гость Владимир Гость Владимир23 март 20:08 Динамичный и захватывающий военный роман, который мастерски сочетает драматизм событий и напряжённые боевые сцены, погружая в атмосферу героизма и мужества. Боевой сплав - Сергей Иванович Зверев
Все комметарии: