Books-Lib.com » Читать книги » Домашняя » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Читать книгу - "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир"

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Домашняя книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир' автора Джон Дербишир прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

710 0 08:43, 26-05-2019
Автор:Джон Дербишир Жанр:Читать книги / Домашняя Год публикации:2010 Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
00

Аннотация к книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир", которую можно читать онлайн бесплатно без регистрации

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.
1 ... 112 113 114 115 116 117 118 119 120 121
Перейти на страницу:

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок П4.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок П5.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок П6.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок П7.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок П8.

Обратим внимание на нетривиальные нули дзета-функции на рисунке П5. Стоит обратить внимание и на оживление, которое по сравнению с остальными демонстрируют рисунки от П4 до П6. Все интересное, что может случиться с дзета-функцией, происходит в критической полосе.

Кроме того, отметим некоторые знакомые значения при t = 0: 1/2 на рисунке П4 (что отвечает ζ(0) = −1/2 на рисунке 9.3, поскольку, разумеется, |−1/2| есть просто 1/2); бесконечность на рисунке П6 (расходимость гармонического ряда, глава 1.iii); 1,644934… на рисунке П7 (решение базельской задачи, глава 5.i); и 1,202056… на рисунке П8 (число Апери, глава 5.vi). Нулевое значение функции при t = 0 на рисунке П2 есть вещественный, тривиальный нуль дзета-функции (глава 9.vi). То, что кажется нулями на рисунках П1 и П3, на самом деле нулями не является; реально принимаемые там значения при t = 0 слишком малы, чтобы их можно было заметить. (Они соответственно равны 0,0083333… и 0,0833333….).

ГЛ — это утверждение об Ο большом (см. главу 15.ii) для этих графиков. Просто посмотрев на них, можно предположить следующее.

• При σ = −1, −2 и −3 график выглядит так, как если бы он был Ο большое от некоторой ускоренно растущей функции от t, может быть, степенной типа t2 или t5, причем эти степени, по-видимому, делаются все больше по мере того, как σ движется на запад вдоль отрицательной вещественной оси.

• При σ = 2 и 3 дело выглядит так, как будто у нас Ο(1), или, другими словами, Ο(t0).

• В критической полосе, т.е. при σ = 0, 1/2 и 1, нелегко сказать, какое Ο большое могло бы подойти.

Могло бы так случиться, чтобы для любого значения σ существовало определенное число μ, для которого |ζ(σ + ti)| = Ο(tμ)? Так, чтобы μ = 0, когда σ больше 1, и чтобы μ было некоторым растущим положительным числом, когда σ уходит от нуля на запад. Вроде именно так дело и обстоит. Но что же происходит в критической полосе, когда а лежит между 0 и 1? И в частности, что происходит на критической прямой, когда σ = 1/2?

Ну что же, вот перед нами (рис. П9) все, что известно на момент написания книги. Для любого заданного значения σ действительно имеется число μ, для которого |ζ(σ + ti)| = Ο(tμ+ε) для произвольно малого ε. Это не вполне то же самое, что предполагалось в предыдущем абзаце, но если вы не заметили разницы, то это простительно. (Однако если вспомнить про ε, которое появлялось у нас в главе 15.iii, то станет понятно его значение здесь). Несомненно, это число μ является функцией от σ. Отсюда и взялась функция Линделёфа μ(σ) в строке 21. Она, конечно, не имеет никакого отношения к функции Мебиуса μ из главы 15 — еще один прискорбный случай перегрузки символов.


Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок П9. Функция Линделёфа.

Кроме того, математически точно известно следующее.

• Когда σ меньше или равна нулю, μ(σ) = 1/2σ.

• Когда σ больше или равна единице, μ(σ) = 0.

• В критической полосе (т.е. когда σ заключена между 0 и 1, не включая границ), μ(σ) < 1/2(1 − σ). Другими словами, функция μ лежит ниже штриховой линии на рисунке П9.

• Для всех значений σ функция μ(σ) выпукла вниз. Это означает, что если соединить любые две точки на ее графике прямой линией, то отсекаемая от графика функции дуга будет целиком лежать ниже (или на) полученной прямой. Это верно везде, включая и критическую полосу; отсюда следует, что для σ, заключенной между 0 и 1, функция μ(σ) должна быть положительной или равняться нулю. (Строка 27 в песне.)

• Из справедливости ГР следует и справедливость ГЛ (которую мы сформулируем прямо сейчас), но не наоборот. ГЛ — более слабый результат.

Это, повторюсь, предел нашего знания на данный момент. ГЛ, представленная на рисунке П10, утверждает, что μ(1/2) = 0, откуда легко следует, что μ(σ) = 1/2σ для всех значений от минус бесконечности до σ = 1/2 и μ = 0 для всех аргументов далее на восток — ср. строки 27 и 28 из песни. Это открытая гипотеза, до сих пор не доказанная. В действительности не известно ни одного значения μ(σ), когда σ лежит строго между 0 и 1. ГЛ — величайший вызов в теории дзета-функции после ГР; она оставалась предметом активных исследований, с тех пор как Линделёф высказал ее в 1908 году.

Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Вера Попова Вера Попова10 октябрь 15:04 Захватывает,понравилось, позитивно, рекомендую!Спасибо автору за хорошую историю! Подарочек - Салма Кальк
  2. Лиза Лиза04 октябрь 09:48 Роман просто супер давайте продолжение пожалуйста прочитаю обязательно Плакала я только когда Полина искала собаку Димы барса ♥️ Пожалуйста умаляю давайте еще !)) По осколкам твоего сердца - Анна Джейн
  3. yokoo yokoo18 сентябрь 09:09 это прекрасный дарк роман!^^ очень нравится #НенавистьЛюбовь. Книга вторая - Анна Джейн
  4. Гость Алла Гость Алла10 август 14:46 Мне очень понравилась эта книга, когда я её читала в первый раз. А во второй понравилась еще больше. Чувствую,что буду читать и перечитывать периодически.Спасибо автору Выбор без права выбора - Ольга Смирнова
Все комметарии: