Books-Lib.com » Читать книги » Бизнес » Динамическое хеджирование: Управление риском простых и экзотических опционов - Нассим Николас Талеб

Читать книгу - "Динамическое хеджирование: Управление риском простых и экзотических опционов - Нассим Николас Талеб"

Динамическое хеджирование: Управление риском простых и экзотических опционов - Нассим Николас Талеб - Читать книги онлайн | Слушать аудиокниги онлайн | Электронная библиотека books-lib.com

Открой для себя врата в удивительный мир Читать книги / Бизнес книг на сайте books-lib.com! Здесь, в самой лучшей библиотеке мира, ты найдешь сокровища слова и истории, которые творят чудеса. Возьми свой любимый гаджет (Смартфоны, Планшеты, Ноутбуки, Компьютеры, Электронные книги (e-book readers), Другие поддерживаемые устройства) и погрузись в магию чтения книги 'Динамическое хеджирование: Управление риском простых и экзотических опционов - Нассим Николас Талеб' автора Нассим Николас Талеб прямо сейчас – дарим тебе возможность читать онлайн бесплатно и неограниченно!

22 0 23:04, 23-08-2025
Автор:Нассим Николас Талеб Жанр:Читать книги / Бизнес Поделиться: Возрастные ограничения:(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
0 0

Аннотация к книге "Динамическое хеджирование: Управление риском простых и экзотических опционов - Нассим Николас Талеб", которую можно читать онлайн бесплатно без регистрации

Книга, написанная трейдером и автором бестселлера «Черный лебедь» Нассимом Николасом Талебом, представляет собой практическую, реальную методологию мониторинга всех рисков, связанных с управлением портфеля. Автор рассматривает хеджирование рисков стандартных и экзотических опционов как составную часть более широкой концепции риск-менеджмента. В этой области нет никакой дорожной карты, поскольку о предмете написано очень мало. Талеб ставит перед собой задачу представить трейдерам и риск-менеджерам методологию, позволяющую понять непростые концепции сконструированных производных инструментов при управлении сложными позициями, а также познакомить их с загадочным миром динамического контроля рисков. Эта книга посвящена хеджированию рисков стандартных и экзотических опционов как составной части более широкой концепции риск-менеджмента. В этой области нет никакой дорожной карты, поскольку о предмете написано очень мало (в отличие от обширной литературы по оценке стоимости опционов). В части I рассматриваются микроструктура рынка и продукты. Часть II дает базовое представление о риске ванильных опционов и инструментах для его измерения. Часть III содержит описание рисков экзотических опционов. В части IV представлены количественные инструменты анализа опционов. В этой книге нет экзотических опционов с их бесконечными вариациями и комбинациями. Анализ позиций ограничен наименьшими разлагаемыми структурами. Иными словами, структуры, представляющие собой объединение двух производных продуктов, исключаются (кроме редких случаев неаддитивности, где комбинация дает некоторое преимущество трейдеру). Цель книги состоит в том, чтобы ознакомить трейдеров и риск-менеджеров с правилами, а не с частными случаями.

1 ... 86 87 88 89 90 91 92 93 94 ... 102
Перейти на страницу:
ее бесконечной извилистости.

Возьмем настолько малые отрезки времени, чтобы любое меньшее приращение было равно 0. Все, что умножается на время, стремится к нулю.

В этом можно убедиться следующим образом:

E(∆W) = μ∆t, поскольку E(∆Z) = 0;

V(∆W) = E{(∆W) – E(∆W)2}2 = E{0 + σ2∆tU2},

поэтому

V(∆W) = σ2∆t.

Это подводит нас к таблице умножения Ито.

Отсюда следует, что уравнение (1) можно записать в виде так называемого процесса Ито:

dW = μ(W, t)dt + σ(W, t)dZ (2)

на пределе. Эту дифференциальную форму уравнения всегда следует рассматривать как стохастический интеграл в сокращенном виде, а не как истинное дифференциальное уравнение в частных производных.

Пусть F(W, t) – ценная бумага, являющаяся функцией W и времени. При разложении получаем:

Поскольку

1. В отличие от обычных методов вычисления стохастическое разложение не останавливается на dW, т. к. dW2 не стремится к нулю, как в случае с береговой линией, которая остается зубчатой при любом масштабировании, и

2. Все умноженное на dt стремится к нулю,

уравнение (3) можно записать следующим образом:

Разложение dW и (dW)2 дает:

Нетрудно понять, что от этого уравнения можно перейти к уравнению Блэка–Шоулза. В качестве первого шага рассмотрим dS/S как процесс Ито:

Рассмотрим процесс логарифмирования dS с помощью преобразования Ито:

Период St0 короче периода t (как правило, t0 – это текущий момент).

Отсюда следует:

В этой книге уравнение (7) применяется для большинства инструментов ценообразования опционов. Кроме того, уравнение (7) удовлетворяет уравнению:

поскольку правый интеграл в уравнении (8) – это генерирующая моменты функция М гауссовского распределения

Следовательно,

Таким образом, операторы могут перейти к ценообразованию опционов, используя следующие методы:

● концепцию дельта-нейтральности Блэка–Шоулза (Black-Scholes, 1973), позволяющую игнорировать кривую полезности операторов и возможные премии за риск, поскольку μ = r. Концепция будет рассмотрена ниже;

● более современный подход, опирающийся на обобщенную модель Харрисона и Крепса (Harrison and Kreps, 1979) и Харрисона и Плиски (Harrison and Pliska, 1981), позволяющую распространить указанную выше концепцию на любой тип условных требований при определенных условиях полноты рынка (поскольку задействованы все инструменты, влияющие на дериватив); кратко этот подход можно описать как позволяющий осуществлять полную репликацию путем динамического (следовательно, и статического) хеджирования;

● другие методы, такие как формула Фейнмана–Каца, используемая в современных финансах в сочетании с леммой Ито для выведения базового процесса на нейтральных к риску путях.

Решение в рамках модели Фейнмана–Каца большого класса стохастических дифференциальных уравнений как вероятностного ожидания функции при определенных условиях регулярности дрейфа и дисперсии (более подробно этот вопрос рассматривается в работе Дана и Жанблана-Пике) (см. Dana and Jeanblanc-Pique, 1994) позволяет операторам использовать для ценообразования опционов вероятностные методы, а не столь обременительные (и менее понятные на интуитивном уровне) дифференциальные уравнения в частных производных. Проще говоря, оператор может оценить опцион, не зависящий от пути (и большой класс опционов, мягко зависящих от пути, таких как барьерные), как ожидание конечной выплаты, предполагая, что цена актива следует за риск-нейтральной диффузией. Таким образом, решение выглядит как

exp(–r(t – t0)) EQ{f(S)}

для опциона, независимого от последовательности цен, и

exp(–r(t – t0))EQ{f(S)/t < τ}

для мягкого опциона последовательности цен (например, барьерного опциона), где Q – риск-нейтральная мера вероятности, f(S) – функция конечной выплаты, t – время до экспирации, и τ – момент остановки (при достижении барьера). Этот подход облегчает метод Монте-Карло (расчет среднеарифметического выигрыша в серии случайных путей). Его особое преимущество стоит в том, что он позволяет использовать численное интегрирование – метод, который, по мнению автора, чрезвычайно легко поддается программированию (благодаря широкодоступным стандартным программам). Численное интегрирование может потребовать более продолжительной работы за компьютером, но значительно сокращает затраты труда на программирование и дает меньшую частоту ошибок.

Оператор может заниматься своим делом, будучи уверенным в достижении риск-нейтральности E0(S(t)).

Лемма Ито: два актива

Лемму Ито нетрудно распространить на несколько активов (табл. G.l).

В данном примере процесс можно ускорить, показав результаты функции двух процессов Ито и времени:

где σ1 и σ2 – волатильность каждого актива W1 и W2, а ρ – корреляция между их движениями.

УРАВНЕНИЕ БЛЭКА–ШОУЛЗА

Концепция риск-нейтральности

Для начала нужно удалить из уравнения дрейф. Допустим, оператор продал европейский опцион колл C на дивидендный актив S и купил облигацию B[229]. Выплаты по облигации составляют r, по базовому активу – r, и актив, как ожидается, будет иметь доходность μ. Опцион колл определяется как Max(S-K, 0) и истекает через время t.

Допустим, оператор всегда будет оставаться дельта-нейтральным. Таким образом, он будет иметь на своем балансе портфель P, состоящий из:

P = —C + ∂C/∂S + B = 0.

Следовательно,

B = C – ∂C/∂S S.

В результате он будет иметь значение B, равное разности между денежными средствами, вырученными за опцион колл, и долларами, вложенными в акцию S. Портфель приносит проценты по безрисковой ставке и дивиденды на акции, которыми владеет оператор. Если ∆P = 0, чтобы портфель был нечувствителен к денежному потоку, то получим:

–∆C + ∂C/∂S × ∆S + ∆B = 0.

Таким образом, для бесконечно малых приращений, используя расширение Ито, получаем:

–∂C/∂t dt – ∂C/∂S dS – ½∂2C/∂S2 dS2 + ∂C/∂S × dS + dB = 0,

где

dS = Sdt + σdW);

dS2 = S2(μdt + σdZ)2 = S2σ2dt из таблиц умножения Ито;

dB = rB, полученные проценты по портфелю облигаций (или уплаченные, если значение отрицательное);

dB = (rC – ∂C/∂S Sr – ∂C/∂S Sd)dt = rCdt – ∂C/∂S S(r – d)dt.

Следовательно,

–∂C/∂tdt – ½∂2C/∂S2S2σ2dt + rCdt – ∂C/∂S S(r – d)dt = 0.

Таким образом:

C/∂t + ½∂2C/∂S2S2σ2 – rC + ∂C/∂S S(r – d) = 0 (10).

Мы видим, что dS исчезает из уравнения, как и μ. Остаются только безрисковая ставка и ставка выплаты.

С этого момента мы будем называть μ риск-нейтральным дрейфом, эквивалентным r – d. Оператор может продолжить и оценить дифференциальное уравнение (10) в граничных условиях. Или он может проинтегрировать диффузию, чтобы получить те же результаты, что и в уравнении (7), но с (r – d) вместо μ:

где x – центрированная гауссова случайная величина. Далее решение для интеграла становится утомительным, но требует лишь незначительных манипуляций. В итоге пользователи получают стоимость опциона колл, для простоты используя значение t0 = 0:

C = exp(–dt)S0N(dl) – exp(–rt)KN(d2),

где

d1

1 ... 86 87 88 89 90 91 92 93 94 ... 102
Перейти на страницу:
Отзывы - 0

Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.


Новые отзывы

  1. Гость Алла Гость Алла10 август 14:46 Мне очень понравилась эта книга, когда я её читала в первый раз. А во второй понравилась еще больше. Чувствую,что буду читать и перечитывать периодически.Спасибо автору Выбор без права выбора - Ольга Смирнова
  2. Гость Елена Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
  3. Гость Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
  4. Гость Наталья Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная
Все комметарии: