Читать книгу - "Динамическое хеджирование: Управление риском простых и экзотических опционов - Нассим Николас Талеб"
Аннотация к книге "Динамическое хеджирование: Управление риском простых и экзотических опционов - Нассим Николас Талеб", которую можно читать онлайн бесплатно без регистрации
Книга, написанная трейдером и автором бестселлера «Черный лебедь» Нассимом Николасом Талебом, представляет собой практическую, реальную методологию мониторинга всех рисков, связанных с управлением портфеля. Автор рассматривает хеджирование рисков стандартных и экзотических опционов как составную часть более широкой концепции риск-менеджмента. В этой области нет никакой дорожной карты, поскольку о предмете написано очень мало. Талеб ставит перед собой задачу представить трейдерам и риск-менеджерам методологию, позволяющую понять непростые концепции сконструированных производных инструментов при управлении сложными позициями, а также познакомить их с загадочным миром динамического контроля рисков. Эта книга посвящена хеджированию рисков стандартных и экзотических опционов как составной части более широкой концепции риск-менеджмента. В этой области нет никакой дорожной карты, поскольку о предмете написано очень мало (в отличие от обширной литературы по оценке стоимости опционов). В части I рассматриваются микроструктура рынка и продукты. Часть II дает базовое представление о риске ванильных опционов и инструментах для его измерения. Часть III содержит описание рисков экзотических опционов. В части IV представлены количественные инструменты анализа опционов. В этой книге нет экзотических опционов с их бесконечными вариациями и комбинациями. Анализ позиций ограничен наименьшими разлагаемыми структурами. Иными словами, структуры, представляющие собой объединение двух производных продуктов, исключаются (кроме редких случаев неаддитивности, где комбинация дает некоторое преимущество трейдеру). Цель книги состоит в том, чтобы ознакомить трейдеров и риск-менеджеров с правилами, а не с частными случаями.
В нашем простом примере представлен опцион «или-или» на два актива (A и B), каждый из которых в настоящее время торгуется на уровне 100, с двумя ценами страйк – 100 для актива A и 100 для актива B. Читателю нужно сначала рассмотреть чувствительность структуры за 30 дней до экспирации, а затем увеличить этот срок до 6 месяцев для более глубокого анализа. Оба актива торгуются с волатильностью 15,7 %. Предположим, что начальная корреляция между ними составляет 50 %.
Обратите внимание, что можно масштабировать активы для базы, отличной от 100, при условии, что и цены, и страйки умножаются на одну и ту же величину.
На интуитивном уровне понятно, что окончательная выплата (рис. 22.1) покрывает больше областей, чем любой из двух опционов в отдельности, но она несколько меньше суммы выплат по двум независимым опционам (см. рис. 22.2 и 22.3).
С учетом принципа загрязнения видно, что цена структуры по мере сокращения времени до экспирации надувается, как воздушный шарик, а потом «зависает под потолком» (рис. 22.1), поскольку сокращаются и волатильность, и время до экспирации.
Помимо обычного набора греков структура демонстрирует чувствительность к корреляции. На самом деле она имеет корреляционную вегу, которую исследователи обычно игнорируют, поскольку из-за плохой подготовки в области точных наук считают корреляцию постоянной.
На рис. 22.4 показана чувствительность структуры к корреляции. Поскольку корреляция находится в границах между –1 и 1, трейдеру не придется тратить много времени на моделирование структуры с двумя активами. Структура с более высокими измерениями потребует более сложного матричного анализа.
При корреляции на уровне 1 говорить об опционе на два актива фактически не приходится. Поскольку оба актива оцениваются с одинаковой волатильностью, структура может торговаться по цене любого из них. Если (по какой-то причине, обусловленной перекрестной волатильностью между активами A и B) волатильность активов различается, структура будет характеризоваться более высокой из двух волатильностей.
При корреляции на уровне –1 структура торгуется по цене, в два раза превышающей стоимость обычного опциона, потому что гарантированно находится в деньгах по одному из двух активов. Для каждого движения вниз по одному активу оператору гарантировано движение вверх по другому активу, так что один из активов обязательно будет в деньгах.
Примечание. В нашем примере оба опциона – коллы. Структура с коллом на один актив и путом на другой (при этом только один из опционов может быть исполнен при наступлении срока) демонстрирует противоположную тенденцию: отрицательная корреляция будет обуславливать снижение цены.
■ Корреляционная вега структуры на два актива отражает изменение цены структуры в результате изменения корреляции.
У опциона более чем на два актива существует множество корреляционных вег, по одной на каждую возможную пару. Соответственно, для структуры на четыре базовых актива мы имеем следующее:
Сумма по диагонали, разумеется, равна 0, поскольку каждый актив имеет корреляцию с самим собой, равную единице. Выше представлена только половина матрицы, потому что корреляции являются зеркальными (корреляция между активом 1 и активом 2 будет равна корреляции между активом 2 и активом 1).
Существует чувствительность к каждой из этих корреляций.
Можно пойти дальше и развить данный метод, поместив его в контекст ковариационной матрицы (т. е. риска всего портфеля). Матрицу, показывающую ковариации между активами, автор книги называет ковариационной матрицей для портфеля (обозначаемой символом ∑). Трейдеров обычно учат рассматривать ∑ как эквивалент волатильности актива.
где σij – ковариация между активом i и активом j. Общая матрица должна удовлетворять определенным ограничениям[201], а корреляция и волатильность должны находиться в определенных пределах, иначе матрица станет отрицательной, эквивалент волатильности – отрицательным, а с подобным даже опытные трейдеры еще не сталкивались.
Коррелированные и некоррелированные греки
Опцион с двумя активами имеет более одной дельты, и хеджер должен сделать некоторые допущения (рис. 22.5). Тот, кто верит в стабильность корреляции, всегда будет торговать структурой иначе, чем сторонник конспирологических теорий.
Поэтому необходимо построить градиент, также называемый общей дельтой и коррелированной дельтой, состоящей из частных дельт.
∆A, называемая частной дельтой актива A, отражает чувствительность структуры к изменениям цены актива A, предполагая, что актив B движется скоррелированно с активом A.
∆B, называемая частной дельтой актива В, отражает чувствительность структуры к изменениям цены актива B, предполагая, что актив A движется скоррелированно с активом B.
Градиент ∇, также называемый коррелированной дельтой, отражает чувствительность структуры к изменениям цены активов A и B, предполагая скоррелированное движение этих активов.
На рис. 22.6 показаны два сценария, смоделированные для актива А. В одном из них актив A меняется без учета соответствующего скоррелированного движения актива B, а в другом последнее учитывается.
Результат независимого движения актива A отличается от результата движения актива A, учитывающего коррелированное движение актива В.
В этом случае реальный риск необходимо рассматривать в двух дельтах, ∆A и ∆B, а также в общих дельтах. Полезно сравнивать дельты структуры в целом.
В табл. 22.1 представлена чувствительность частной дельты опциона А только к активу A (актив B остается замороженным).
Для измерения общей, или некоррелированной, дельты требуется более активное использование матричного анализа.
Общая дельта: ∇TΣ∇.
Она может быть рассчитана для двух позиций с двумя активами следующим образом:
Это подводит нас к понятию частной гаммы.
Поскольку каждая структура имеет четыре возможные дельты, она также будет иметь следующие гаммы. Мы рассмотрим только реалистичные коррелированные гаммы.
ГаммаAA = изменения ∆A, обусловленные изменениями актива A (актив B движется в соответствии с его корреляцией).
ГаммаAB = изменения ∆A, обусловленные изменениями актива B (актив A движется в соответствии с его корреляцией).
ГаммаBA = изменения ∆B, обусловленные изменениями актива A (актив B движется в соответствии с его корреляцией).
ГаммаAB и гаммаBA дают одинаковый результат.
ГаммаBB = изменение ∆B, обусловленные изменениями актива B (актив A движется в соответствии с его корреляцией).
Еще один опцион, предполагающий выбор, – это сверхдоходный опцион.
■ Сверхдоходный опцион (предполагающий выбор между двумя активами) – это опцион, который дает владельцу право покупать или продавать один актив против другого по заранее определенной ставке. Такие опционы, как правило, являются коллами на максимуме и путами на минимуме[202].
Сверхдоходные опционы являются полезным инструментом при изучении вопросов расчетных единиц. Интересно смотреть на них с точки зрения индексного распределения активов. Управляющий фондом, у которого нет фиксированного распределения активов, может предположить, что есть теоретическая дельта, аналогичная такому опциону, а затем, используя дельта-векторы и гамма-матрицы, постоянно корректировать свою позицию.
Сверхдоходный опцион можно спокойно рассматривать как спред-опцион, если он обозначен следующим образом:
Max(S1, S2) = [S1 + Max(0, S2 – S1)].
Это означает, что сверхдоходный опцион есть не что иное, как один актив плюс спред между двумя активами. Что касается спред-опционов, то их лучше рассматривать как корзинные опционы, считая, что один из активов имеет отрицательный вес.
Возможно, мать всех сверхдоходных опционов – это опцион на фьючерс на облигации. Он дает право стороне, имеющей короткую позицию во фьючерсе, поставлять самые дешевые подходящие облигации. Таким образом, это опцион как минимум на несколько
Прочитали книгу? Предлагаем вам поделится своим впечатлением! Ваш отзыв будет полезен читателям, которые еще только собираются познакомиться с произведением.
Оставить комментарий
-
Гость Алла10 август 14:46 Мне очень понравилась эта книга, когда я её читала в первый раз. А во второй понравилась еще больше. Чувствую,что буду читать и перечитывать периодически.Спасибо автору Выбор без права выбора - Ольга Смирнова
-
Гость Елена12 июнь 19:12 Потрясающий роман , очень интересно. Обожаю Анну Джейн спасибо 💗 Поклонник - Анна Джейн
-
Гость24 май 20:12 Супер! Читайте, не пожалеете Правила нежных предательств - Инга Максимовская
-
Гость Наталья21 май 03:36 Талантливо и интересно написано. И сюжет не банальный, и слог отличный. А самое главное -любовная линия без слащавости и тошнотного романтизма. Вторая попытка леди Тейл 2 - Мстислава Черная